Библиотека    Новые поступления    Словарь    Карта сайтов    Ссылки






назад содержание далее

Гл. 11-15.

12 Остановимся попробуем обобщить!

Два дня спустя полицейское начальство из Скотланд-Ярда внезапно и совершенно неожиданно для Крейга срочно откомандировало его в Норвегию для расследования, хотя и интересного, но нас не касающегося. Поэтому я воспользуюсь отсутствием Крейга, чтобы поделиться с вами кое-какими собственными соображениями по поводу числовых машин Мак-Каллоха. Те же читатели, которым не терпится узнать решение загадки сейфа из Монте-Карло, могут отложить чтение этой главы на потом.

Математики обожают обобщать! Сплошь и рядом случается так: некий математик по имени X доказывает новую теорему и публикует доказательство в научном журнале. Потом проходит полгода и появляется другой математик, Y, который вдруг заявляет: «Ну ладно, неплохую теоремку доказал этот X, однако я могу доказать гораздо более общий случай!» И тут же

Стр.152

печатает статью под названием «Об одном обобщении георемы Х-а». Или же Y оказывается похитрее и поступает следующим образом: сначала он втайне обобщает теорему, доказанную Х-м, а потом исследует какой-нибудь частный случай своего обобщения. Этот частный случай по внешнему виду обычно настолько отличается от исходной теоремы, предложенной Х-м, что Y вполне может опубликовать полученный результат в качестве новой, оригинальной теоремы. Тут на сцене, естественно, появляется третий математик по имени Z: этого Z никак не оставляет чувство, что где-то теоремы Х-а и Y-a в чем-то важном очень сходны. Он начинает напряженно работать и... обнаруживает некий общий принцип. Z тут же публикует работу, в которой формулирует и доказывает этот новый общий принцип, а в заключение добавляет: «Теоремы, предложенные Х-м и Y-м, вполне могут рассматриваться как частные случаи нашего общего принципа, поскольку...»

Ну что ж, я тут не исключение. Поэтому я хочу сначала указать на некоторые свойства машин Мак-Каллоха, которых, как мне кажется, не заметили ни сам Мак-Каллох, ни Крейг, ни Фергюссон, после чего я попытаюсь сделать некоторые обобщения.

Первое, что больше всего поразило меня при нашем обсуждении работы второй машины Мак-Каллоха, было то, что после введения правила 4 (правило повторения) мы уже больше не нуждаемся в правиле 2 (правило ассоциата) для того, чтобы получить принцип Крейга и законы Фергюссона! В самом деле, рассмотрим машину, в которой используются только правила 1 и 4. Для такой машины мы всегда можем найти некое число X, которое порождает само себя; можем также найти такое число, которое порождает повторение самого себя; задавая произвольное число А, мы можем найти такое число X, которое порождает АХ; наконец, мы можем найти число X, которое порождает повторение числа АХ или же повторение повторения АХ. Кроме того, используя машину Мак-Каллоха, из которой выведено правило 2, мы можем найти такое число X, которое порождает обращение самого себя, или число X, которое порождает повторение своего собственного обращения, или же число X, которое порождает обра-

Стр. 153

щение числа АХ, или, наконец, число X, которое порождает повторение обращения числа АХ. Далее, рассмотрим машину, в которой используются предложенные Мак-Каллохом правила 1, 2 и 4 (за исключением правила 3, то есть правила обращения). При такой машине у нас имеются два различных способа построения числа, которое порождает ассоциат самого себя, два способа построения числа, которое порождает свое собственное повторение; наконец, два способа построения числа, порождающего ассоциат своего повторения или повторение ассоциата самого себя.

Наконец, если у нас имеется произвольная машина, в которую заложены лишь правила 1 и 4, то принцип Крейга и законы Фергюссона продолжают выполняться и в этом случае. Таким образом, если бы мы вместо правила 2 воспользовались правилом 4, то для большинства задач, о которых шла речь в двух предыдущих главах, мы вполне могли бы получить альтернативные решения. (Понятно ли читателю, как все это можно сделать? Если нет, то можно обратиться к приведенным далее пояснениям.)

Я мог бы рассказать еще о многом, но лучше, пожалуй, будет сформулировать мои основные замечания в виде трех теорем.

Теорема 1. Закон Мак-Каллоха (который, как известно, гласит, что при любом А существует некое число X, которое порождает число АХ) оказывается справедливым не только для машин, подчиняющихся правилам 1 и 2, но и для машин, подчиняющихся правилам 1 и 4.

Теорема 2. Любая машина, которая подчиняется закону Мак-Каллоха, подчиняется также и двум принципам Крейга.

Теорема 3. Любая машина, которая подчиняется одновременно второму принципу Крейга и правилу 1, должна подчиняться также и всем законам Фергюссона.

Не сообразит ли читатель, как доказать все эти теоремы?

Решени

Рассмотрим сначала произвольную машину, которая подчиняется правилам 1 и 4. Как известно, при любом

Стр.154

X число 52X порождает число XX; поэтому если выбрать в качестве X число 52, то мы получим, что число 5252 порождает число 5252. Итак, у нас есть число, которое порождает само себя. Кроме того, число 552552 порождает повторение самого себя. Далее, чтобы для любого А найти число X, которое порождает АХ, возьмем в качестве X число 52А 52 (в самом деле, оно порождает повторение числа А 52, которое есть число А52А52, то есть число АХ). Тем самым мы доказали теорему 1. (Если мы хотим найти число X, которое порождает повторение АХ, то в качестве X следует взять число 552А552.)

А теперь рассмотрим машину, которая подчиняется выведенным Мак-Каллохом правилам 1, 3 и 4. Числом, порождающим обращение самого себя, является, например, число 452452 (оно порождает обращение повторения числа 452, или, другими словами, обращение числа 452452). (Сравните его с предыдущим решением 43243.) Числом, которое порождает повторение обращения самого себя, является число 54525452. (Сравните его с прежним решением 5432543.)

Далее, рассмотрим машину, которая подчиняется правилам 1, 2 и 4. Мы знаем, что число 33233 порождает свой собственный ассоциат точно так же, как и число 352352. Что касается числа X, порождающего повторение самого себя, то у нас уже имеются два решения — это числа 35235 и 552552. Что же касается числа X, порождающего ассоциат повторения самого себя, то одним решением служит число 3532353; другим — число 35523552. Наконец, для числа, которое порождает повторение своего собственного ассоциата, также существуют два решения — это число 5332533 или число 53525352.

Наконец, рассмотрим некоторую произвольную машину, которая подчиняется по меньшей мере двум из правил Мак-Каллоха, а именно: правилам 1 и 4. Для заданного операционного числа М числом А", порождающим М(Х), оказывается число М52М52. (Сравните его с прежним решением — числом М32МЗ, полученным для машины, в которой вместо правила 4 используется правило 2.) Если теперь задано операционное число М и некое число А, то числом X, порождающим

Стр. 155

M(AX), будет число М52АМ52. (Сравните его с прежним решением—М32АМЗ.) Построенные решения показывают нам, что оба принципа Крейга могут быть получены на основании правил 1 и 4. Впрочем, я сформулировал гораздо более общее утверждение, а именно: для того чтобы получить принципы Крейга, достаточно одного только закона Мак-Каллоха (теорема 2). Это утверждение можно доказать тем же способом, который использовался нами в гл. 10. В самом деле, для любого заданного операционного числа М существует некое число Y, которое порождает MY; отсюда ясно, что число М У порождает М(М У). Поэтому число X порождает М(Х), где Х = МУ. Точно так же для любого числа А, если имеется некоторое число У, порождающее AMY, число МУ порождает М(АМУ) и, следовательно, число X порождает М(АХ) при Х=МУ.

Что же касается теоремы 3, то ее можно доказать так же, как это делалось в предыдущей главе. [Например, если даны операционные числа М и N и если выполняется второй принцип Крейга, то существует некое число X, которое порождает M(N2X). Если теперь мы обозначим число N2X через У, то получим, что число X порождает М(У), а число У порождаетN(X)]

13 Ключ

Дело, по которому Крейг поехал в Норвегию, заняло у него гораздо меньше времени, чем он предполагал, и ровно через три недели инспектор возвратился домой. Дома его ждала записка от Мак-Каллоха:

Дорогой Крейг!

Если ты случайно вернешься из Норвегии до 12 мая (это пятница), то приходи ко мне в этот день обедать. Фергюссона я уже пригласил.

С приветом

Норман Мак-Каллох

Стр. 156

— Вот и отлично!—сказал себе Крейг.—Я вернулся как раз вовремя!

Крейг приехал к Мак-Каллоху минут через пятнадцать после того, как там появился Фергюссон.

— С благополучным возвращением! — приветствовал приятеля Мак-Каллох.

— Пока вас не было,— сразу же сообщил Фергюссон,— Мак-Каллох изобрел новую числовую машину!

— Ну да? — удивился Крейг.

— Я занимался этим не один, — сказал Мак-Каллох, — Фергюссон тоже приложил к ней руку. А вообще-то машина интересная; на этот раз в нее введены следующие четыре правила:

правило MI: для любого числа X число 2X2 порождает X;

правил о МП: если число X порождает число У, то число 6Х порождает число 2 У;

правило MIII: если число X порождает число У, то число 4Х порождает число У (как и в случае предыдущей машины);

правило MIV: если число X порождает число У, то число 5Х порождает число УУ (как и в случае предыдущей машины).

— Эта машина,— продолжал Мак-Каллох,— обладает всеми прекрасными свойствами моей последней машины — она подчиняется двум твоим принципам и, кроме того, закону двойных аналогов Фергюссона.

Крейг довольно долго и внимательно изучал эти правила. Наконец он сказал:

— Что-то мне никак не удается сдвинуться с места. Не могу даже найти число, которое порождает само себя. Есть тут такие числа?

— Есть,— ответил Мак-Каллох,— но с помощью этой машины найти их гораздо труднее, чем в предыдущем случае. Честно говоря, я тоже не смог решить эту задачу. А вот Фергюссон с ней справился. Более того, теперь мы знаем, что такое короткое число, порождающее само себя, состоит из десяти цифр.

Крейг опять глубоко задумался.

— А что, первых двух правил недостаточно для нахождения такого числа? — поинтересовался он наконец.

Стр.157

— Нет, конечно! — ответил Мак-Каллох.—Для получения этого числа нам необходимы все четыре правила.

— Удивительное дело,— пробормотал Крейг и вновь погрузился в глубокое раздумье.

— О господи! — вдруг воскликнул он, буквально подскочив на стуле.—Да ведь это же решение загадки сейфа!

— О чем это вы? — спросил Фергюссон.

— А-а, прошу прощения! Вы ведь не знаете,— сказал Крейг и поведал им всю историю с банковским сейфом из Монте-Карло.

— Надеюсь, вы понимаете, что наш разговор сугубо конфиденциальный,— заключил свой рассказ Крейг.— А теперь, Мак-Каллох, если ты дашь мне число, которое порождает само себя, то я сразу же смогу назвать комбинацию, которая откроет замок сейфа.

Итак, читателю предлагаются три задачи.

1) Какое число X порождает само себя в последней машине?

2) Какая комбинация открывает замок сейфа?

3) Как связаны между собой первые два вопроса?

Эпилог

Рано утром следующего дня Крейг, подыскав надежного человека, отправил в Монте-Карло пакет, адресованный Мартинесу, в котором была записана найденная им накануне кодовая комбинация. Курьер прибыл вовремя, и сейф был благополучно открыт.

Как и обещал Мартинес, совет директоров банка прислал Крейгу солидное денежное вознаграждение. Крейг настоял на том, чтобы разделить эти деньги с Мак-Каллохом и Фергюссоном. Свой успех трое друзей решили отпраздновать, заказав шикарный ужин в ресторане «У льва».

— А знаете,—сказал Крейг, отведав превосходного хереса.— Пожалуй, это было одно из самых интересных дел в моей практике. Подумать только, числовые машины, созданные из чисто интеллектуального любопытства, и вдруг оказывают такую неоценимую помощь на практике!

Стр. 158

Решени

Сначала еще несколько слов о загадке сейфа из Монте-Карло. В последнем условии Фаркуса не говорится, что требуемая комбинация у непременно должна отличаться от комбинации х. Поэтому если предположить, что х и у представляют собой одну и ту же комбинацию, то указанное условие можно будет прочитать так: «Пусть комбинация х родственна по отношению к комбинации х, тогда если комбинация х блокирует замок, то комбинация х будет нейтральной; если же комбинация х оказывается нейтральной, то комбинация х блокирует замок». Однако невозможно, чтобы комбинация х одновременно была нейтральной и блокировала замок. Следовательно, если комбинация х родственна но отношению к х, тогда эта комбинация не может ни оказаться нейтральной, ни блокировать замок. А значит, она должна этот замок открывать! Таким образом, если мы сумеем найти комбинацию х, которая родственна самой себе, то такая комбинация х обязательно откроет нам замок.

Конечно, Крейг понял это еще задолго до того, как вернулся в Лондон. Но как найти комбинацию х, которая родственна самой себе? Именно на этот вопрос Крейг и не мог ответить до тех пор, пока судьба не столкнула его с третьей машиной Мак-Каллоха.

Оказывается, задача нахождения комбинации, которая, согласно условию Фаркуса, является родственной самой себе, по своей сути тождественна задаче нахождения числа, которое порождает само себя в последней машине Мак-Каллоха. Единственное существенное отличие заключается в том, что кодовые комбинации для замка — это цепочки букв, тогда как числовые машины работают с цепочками цифр. Однако первую задачу можно легко преобразовать ко второй, и наоборот, следующим простым приемом.

Во-первых, мы рассматриваем лишь комбинации из букв Q, L, V, J? (совершенно очевидно, что только эти буквы играют в задаче существенную роль). Предположим теперь, что вместо этих букв мы будем использовать собственно цифры 2, 6, 4, 5 (то есть 2 вместо Q, 6

Стр. 159

вместо L, 4 вместо V и 5 вместо R). Для удобства запишем это так:

Q L V R

2 6 4 5

Теперь посмотрим, какой вид примут первые четыре условия Фаркуса, если мы запишем их не в буквах, а в цифрах.

(1). Для любого числа Х число 2X2 является родственным числу X.

(2). Если число X родственно числу Y, то число 6Х

оказывается родственным числу 2 У.

(3). Если число X родственно числу У, то число 4Х

родственно числу Т.

(4). Если число X родственно числу У, то число 5Х родственно числу УУ.

Сразу видно, что это — точно те же правила, которым подчиняется последняя машина Мак-Каллоха, с той лишь разницей, что вместо слова «порождает» используется слово «родственно». (Конечно, я мог бы воспользоваться словом «порождает» и в гл. 8, где речь шла об условиях Фаркуса, но тогда читателю было бы слишком уж легко обо всем догадаться!)

Позвольте мне сказать это еще раз и поточнее. Для любой комбинации х, состоящей из букв Q, L, V, R, мы будем обозначать через х число, которое получается при замене Q на цифру 2, L на цифру 6, V на цифру 4 и R на цифру 5. Например, если это комбинация вида VQRLQ, то х—число 42562. При этом мы будем называть число х кодовым номером комбинации х. ( Кстати, идея приписывания логическим высказываниям специальных чисел — так называемых «гёделевых номеров» — принадлежит известному логику Курту Гёделю и известна под названием гёделевой нумерации. Она очень важна, как мы увидим в IV части нашей книги.)

Значит, мы можем окончательно сформулировать главную мысль последнего абзаца в таком виде: для любых комбинаций х и у, составленных из четырех букв Q, L, V, R, если, исходя из правил MI, MII, MIII и MIV, используемых в последней машине Мак-Каллоха, можно показать, что число х порождает число у, то

Стр.160

тогда, исходя из первых четырех условий Фаркуса, можно показать и то, что комбинация х является родственной по отношению к комбинации у, и наоборот

Таким образом, если мы находим число, которое юлжно порождать само себя в последней числовой машине Мак-Каллоха, то это число должно оказаться кодовым номером некой комбинации, родственной самой себе, причем эта комбинация будет открывать замок.

Но как же нам найти такое число N, которое, порождало бы само себя в нашей последней машине? Прежде всего будем искать некоторое число Н, такое, чтобы для любых чисел X и У, если число X порождает число У, число НХ порождало бы число Y2Y2. Если мы сумеем найти это число Н, тогда при любом У число Н2 У2 будет порождать число У2 У2 (потому что, согласно правилу MI, число 2У2 порождает число У), а значит, число Н2Н2 будет порождать число Н2Н2; тем самым мы получим искомое число N. Но как найти число Н?

Эта задача сводится к следующей: как, исходя из заданного числа У и последовательно применяя операции, которые способна выполнять наша машина, получить число У2У2? Так вот, построить число У2У2 из числа У можно следующим способом: сначала построить обращение числа У, получив число У; затем слева от "у" приписать цифру 2, получив тем самым число 2У; далее построить обращение числа 2Т, получив число У2; наконец, построить повторение числа У2 , получив число У2 У2. Эти операции обозначаются соответственно операционными числами 4, 6, 4 и 5, поэтому в качестве Н мы выберем число 5464.

Давайте проверим, подходит ли нам найденное число Н. Пусть число X порождает число У; тогда мы должны выяснить, действительно ли число 5464Н порождает число У2У2. Но поскольку X порождает У, то число 4Х порождает число У (в соответствии с правилом MIII); значит, число 64Х порождает число 2V (в соответствии с правилом МII). Отсюда следует, что число 464Х порождает число У2 (в соответствии с правилом MIII), и, стало быть, число 5464Х порождает число У2У2 (в соответствии с правилом MIV). Итак,

Стр.161

мы получили, что если X порождает У, то число НХ в самом деле порождает число Y2Y2.

Теперь, когда число Я найдено, выберем число N равным Н2Н2, в результате мы получим число 5464254642, которое порождает само себя. (Читатель может легко убедиться в этом самостоятельно.)

Но раз число 5464254642 порождает само себя, то, значит, это и есть кодовый номер той комбинации, которая открывает замок сейфа. Ясно, что указанная комбинация имеет вид RVLVQRVLVQ.

Конечно, задачу о сейфе из Монте-Карло можно решить и не преобразовывая ее в задачу для числовой машины, однако я привел здесь это решение по двум причинам. Во-первых, именно так решал во времени эту задачу сам Крейг, а во-вторых, я подумал, что читателю будет интересно увидеть, как две математические задачи могут иметь разное содержание, но одну и ту же абстрактную форму.

Для того чтобы непосредственно убедиться в том, что комбинация RVLVQRVLVQ является родственной по отношению к самой себе (а значит, и открывает замок), будем рассуждать следующим образом. Комбинация QRVLVQ родственна по отношению к комбинации RVLV (согласно свойству Q), поэтому комбинация VQRVLVQ будет родственной по отношению к обращению комбинации RVLV (согласно свойству V), то есть к комбинации VLVR. Значит, комбинация LVQRVLVQ родственна по отношению к комбинации QVLVR (согласно свойству L), и, следовательно, комбинация VLVQRVLVQ оказывается родственной по отношению к обращению комбинации QVLVR, то есть комбинации RVLVQ. Тогда (согласно свойству R) комбинация RVLVQRVLVQ будет родственной по отношению к повторению комбинации RVLVQ, то есть к комбинации RVLVQRVLVQ. Итак, комбинация RVLVQRVLVQ действительно является родственной самой себе.

Стр. 162

Часть четверта

Разрешима или неразрешима наша задача?

Стр. 163

14 Логическая машина Фергюссона

Через несколько месяцев после того, как была с блеском разрешена загадка банковского сейфа в Монте-Карло, Крейг и Мак-Каллох наконец-то навестили Фергюссона — их очень заинтересовала его логическая машина. Разговор скоро зашел о сущности доказуемости.

— Я расскажу вам интересную и весьма поучительную историю,— сказал Фергюссон.— На экзамене по геометрии одного студента попросили доказать теорему Пифагора. Он сдал свою работу преподавателю, но тот возвратил ее с пометкой: «Это не доказательство!» Молодой человек пошел к преподавателю и сказал: «Сэр, как вы можете утверждать, будто то, что я вам сдал,— не доказательство? За весь курс лекций вы ни разу не дали нам определения доказательства. Вы давали нам строгие определения таких геометрических понятий, как треугольник, квадрат, окружность, параллельность, перпендикулярность и т. д., однако никогда не привели нам точного определения того, что же вы называете доказательством. Как же теперь вы можете так уверенно заявлять, будто мое доказательство — вовсе не доказательство? Как вы можете доказать, что оно не является доказательством?»

— Блестяще! — воскликнул Крейг, захлопав в ладоши.— Этот юноша далеко пойдет. А что же ответил преподаватель?

— К сожалению,— усмехнулся Фергюссон,— преподаватель оказался сухим педантом без чувства юмора и воображения. Он снизил студенту оценку за непочтительность.

— Очень жаль,— с досадой сказал Крейг.— Окажись я на месте преподавателя, непременно поставил бы этому студенту высший балл.

— Разумеется,— согласился Фергюссон,— я бы поступил точно так же. Но вы же прекрасно знаете, как часто преподаватели, лишенные творческого начала, побаиваются способных студентов.

Стр.164

— Должен признаться,— сказал Мак-Каллох,— что на месте этого преподавателя я бы тоже не смог ответить на вопрос студента. Разумеется, я похвалил мы его за толково поставленный вопрос, но ответить на него я бы все-таки не смог. В самом деле, что такое доказательство? Когда я сталкиваюсь с правильным доказательством, я почему-то всегда понимаю, что оно правильно; когда мне попадаются слабые аргументы, я обычно могу их указать. Но если бы меня попросили дать строгое определение доказательства, я тоже оказался бы в весьма затруднительном положении.

— Точно так же, как и почти все работающие математики,— поддержал Мак-Каллоха Фергюссон.— В девяносто девяти процентах случаев они вполне могут распознать правильность доказательства или указать на слабые места в неправильном доказательстве, однако не и состоянии привести точное определение доказательства. Нас же, логиков, интересует прежде всего анализ самого понятия «доказательство» — ведь мы хотим определить его так же строго, как и любое другое математическое понятие.

— Но раз большинство математиков все же понимают, что такое доказательство, хотя и не могут дать его четкого определения, то так ли уж важно искать его? — заметил Крейг.

— Важно, и по нескольким причинам,— ответил Фергюссон.— Но даже не будь этих причин, я все равно котел бы знать это определение ради самого определения. В истории математики часто случалось, что какие-то основные понятия, например понятие непрерывности, интуитивно понимались и осваивались еще задолго до того, как для них было введено строгое определение. Однако, получив четкое определение, данное понятие как бы переходит в новую категорию. Становится возможным установить связанные с ним факты, которые было бы очень трудно или вовсе невозможно открыть, не зная совершенно четко объема этого понятия. В этом смысле не является исключением и понятие «доказательство». Так, иногда случается, что в доказательстве используется какой-нибудь новый принцип — например аксиома выбора — и при этом часто возникает сомнение, является ли применение этого принципа законным. Так вот,

Стр.165

строгое определение понятия «доказательство» позволяет точно указать, какие математические принципы можно использовать, а какие нельзя.

С другой стороны, особенно важно иметь тонн определение доказательства тогда, когда нужно увидить, что данное математическое утверждение недоказуемо в той или иной системе аксиом. Данная ситуация очень похожа на положение дел с построением при помощи циркуля и линейки в евклидовой геометрии: там, для того чтобы показать, что некое построение (например, трисекция угла, квадратура круга или удвоение куба *) невозможно, требуется обычно более критическое определение понятия «построение», чем для того, чтобы показать, например, что то или иное геометрическое построение с помощью циркуля ц линейки действительно возможно. То же самое происходит и с доказуемостью: чтобы продемонстрировать, что данное утверждение недоказуемо в некоторой исходной системе аксиом, требуется гораздо более строгое и критическое определение самого понятия «доказательство», чем для получения соответствующего положительного результата, а именно что данное утверждение в самом деле является доказуемым при принятии той или иной аксиомы.

Загадка Гёдел

— Итак,— продолжал Фергюссон, — если задана некоторая система аксиом, то доказательство в данной системе представляет собой конечную последовательность высказываний, построенную по очень строги правилам. При этом оказывается совсем несложно чисто механическим путем решить, является ли данная последовательность высказываний доказательством в этой системе или нет. Собственно говоря, совсем несложно даже придумать машину, которая может это делать. Гораздо труднее оказывается создать такую машину, которая могла бы решать, какие высказывания в данной системе аксиом доказуемы, а какие нет.

* То есть построение куба с объемом, вдвое большим, чем объем данного куба.— Прим. перев.

Стр. 166

Ответ, я полагаю, зависит от выбора исходной системы аксиом...

Сейчас меня интересуют вопросы механического доказательства теорем, то есть вопросы создания таких машин, которые могли бы доказывать различные математические истины. Вот, например, мое последнее детище,— сказал Фергюссон, с гордостью указав на какое-то престранное сооружение.

Крейг и Мак-Каллох несколько минут разглядывали машину, пытаясь разгадать ее назначение.

— И что же она умеет? — спросил наконец Крейг.

— Она может доказывать различные утверждения, касающиеся положительных целых чисел,— ответил Фергюссон.— Я использую язык, в котором имеются имена для разных множеств чисел,— точнее, подмножеств положительных целых чисел. При этом существует бесконечно много таких числовых множеств, которые поддаются наименованию на этом языке. Например, у нас имеются специальные названия для множества четных чисел, для множества нечетных чисел, для множества простых чисел, для множества чисел, делящихся на 3, и т. д.— вообще, можно сказать, что практически любое множество чисел, которое могло бы представить интерес для специалиста по теории чисел, обладает своим именем на этом языке. И хотя сама совокупность числовых множеств, поддающихся описанию на этом языке, содержит бесконечно много элементов, она (по мощности.— Перев.) будет все же не больше, чем множество всех положительных чисел. С каждым положительным целым числом п оказывается связанным определенное множество чисел Ап, имеющее имя на нашем языке — это позволяет представить себе, что все именуемые множества расположены в виде последовательности А1, А2,..., Аn ... . (Если хотите, можете вообразить себе, например, книгу с бесконечным числом страниц, причем для каждого целого положительного л на соответствующей n-й странице приведено описание того или иного множества положительных целых чисел. Тогда система An—это множество, описанное на n-й странице этой книги.)

Введем теперь математический символ Є, который означает «принадлежит» или «является членом». Дл

Стр.167

каждого числа х и произвольного числа у мы можем сформировать утверждение х Є Ау, которое означает, что х принадлежит множеству Ау. Это единственный вид утверждений, которые воспринимает моя машина. При этом задача машины состоит в том, чтобы определить, какие числа каким поддающимся описанию множествам принадлежат.

Далее, каждое утверждение х Є Ау имеет свой кодовый номер — число, которое, будучи записано в обычной десятичной системе счисления, состоит из цепочки единиц длиной х и следующей за ней цепочки нулей длиной у. Например, кодовый номер утверждения ЗЄА2 выглядит как 11100; кодовый номер утверждения 1ЄА5 имеет вид 100000. При этом кодовый номер утверждения хЄАу, то есть число, состоящее из х единиц и следующих за ними у нулей, я буду обозначать символом х*у.

— Машина работает следующим образом,— продолжал Фергюссон.— Когда она обнаруживает, что число х принадлежит множеству Ау, то она отпечатывает число х*у, то есть кодовый номер утверждения хЄАу. Если при этом машина печатает число х*у, то я говорю, что машина доказала утверждение хЄАу. Кроме того, если машина способна напечатать число х*у, то я говорю, что утверждение хЕАу доказуемо (с помощью моей машины).

Наконец, я знаю, что моя машина всегда точна—в том смысле, что каждое утверждение, которое можно доказать с ее помощью, является истинным.

— Минуточку,— вмешался Крейг.— Что значит «является истинным»? Какая разница между «является истинным» и «доказуемо»?

— Да это же совершенно разные вещи,— объяснил Фергюссон.— Я говорю, что утверждение хЄАу истинно, если х действительно является элементом множества А у. Если же оказывается, что машина способна напечатать число х*у, тогда я говорю, что утверждение хЄА,. доказуемо с помощью моей машины.

— Вот теперь ясно,— сказал Крейг.— Другими словами, утверждая, что ваша машина точна — или, иначе, что каждое утверждение, доказуемое с помощью машины, является истинным,— вы имеете в виду, что ваша

Стр.168

машина никогда не напечатает число х*у, если х в действительности не принадлежит множеству Ау. Правильно я понял?

— Совершенно верно! — ответил Фергюссон.

— Скажите, а почему вы так уверены, что машина всегда точна? — спросил Крейг.

— Чтобы ответить на этот вопрос, я должен рассказать о ней более подробно,— ответил Фергюссон.— Дело в том, что машина работает на основе определенных аксиом относительно положительных целых чисел; эти аксиомы запрограммированы в машине в виде неких команд. Все эти аксиомы представляют собой хорошо известные математические истины. При этом машина не может доказать какое-либо утверждение, если оно не вытекает логически из этих аксиом. Но поскольку все аксиомы истинны, а любое логическое следствие из истинных утверждений тоже является истинным, то, стало быть, машина не способна доказать ложное утверждение. Если хотите, я могу перечислить эти аксиомы, и вы убедитесь сами, что машина действительно может доказывать только истинные утверждения.

— Сначала я хотел бы выяснить вот что,— сказал Мак-Каллох.— Допустим на некоторое время, что любое утверждение, доказуемое с помощью вашей машины, на самом деле является истинным. Значит ли это, что любое истинное утверждение вида хЄА, доказуемо с ее помощью? Иначе говоря, способна ли ваша машина доказывать все истинные утверждения типа хЄАу или только некоторые из них?

— Это очень важный вопрос,— ответил Фергюссон,— но, увы, ответа на него я не знаю. В этом-то как раз и состоит главная проблема, которую я никак не могу разрешить! Уже не один месяц я пытаюсь найти ответ на этот вопрос, но пока безуспешно. Так, я совершенно точно знаю, что моя машина может доказать любое утверждение вида х ЄА у, которое является логическим следствием заложенных в нее аксиом, однако я не знаю, достаточное ли количество аксиом введено мною в машину. Аксиомы, о которых идет речь, представляют собой нечто вроде общей суммы сведений, известных математикам относительно систе-

Стр. 169

мы положительных целых чисел; и все же, может быть, их недостаточно, чтобы строго установить, какие же числа х и к каким поддающимся описанию множествам А у принадлежат. До сих пор любое утверждение вида хЄАу, которое я считал истинным, исходя из чисто математических соображений, оказывалось логическим следствием заложенных в машину аксиом; при этом машина способна доказать любое взятое мною утверждение такого вида. Однако то, что я не сумел найти истинного утверждения, которое машина не могла бы доказать, вовсе не означает, что такого утверждения не существует—может быть, я его просто еще не обнаружил. В то же время вполне может оказаться, что машина действительно способна доказать все истинные утверждения — но этого я тоже еще не сумел доказать. Пока я просто не знаю, как это сделать!

Короче говоря, после этого Фергюссон подробно объяснил Крейгу и Мак-Каллоху, какие аксиомы заложены в машину и какие чисто логические правила позволяют доказывать новые утверждения на основании уже имеющихся. Все эти подробности вполне убедили Крейга и Мак-Каллоха в том, что машина на самом деле точна — что она действительно доказывает лишь истинные утверждения. Однако вопрос о том, может ли машина доказать все истинные утверждения или только некоторые из них, так и остался нерешенным. На протяжении нескольких последующих месяцев они часто собирались вместе для детального обсуждения возникших вопросов — пока, наконец, задача не была полностью решена.

Я не стану утомлять читателя и приводить все подробности полученного ими решения; упомяну лишь о том, что действительно представляется для нас важным. Переломный момент в их исследованиях наступил тогда, когда друзья в конце концов сумели сформулировать три ключевые особенности машины; этого оказалось достаточно для полного решения задачи. Кажется, первыми обратили внимание на эти особенности Крейг и Мак-Каллох, однако их окончательная формулировка принадлежит Фергюссону. Но

Стр. 170

прежде чем перейти к описанию особенностей машины. я позволю себе сделать небольшое отступление.

Для любого множества А положительных целых чисел, под его дополнением А понимается множество положительных целых чисел, не входящих в А. Например, если А—множество четных чисел, то его дополнением А будет множество нечетных чисел; если А— множество чисел, делящихся на 5, то А—это множество чисел, которые на 5 не делятся.

Для любого множества А положительных целых чисел под А* мы будем подразумевать множество всех положительных целых чисел х, для которых х*х является элементом множества А. Поэтому для любого числа х выражение «число х принадлежит множеству А*» эквивалентно выражению «число х*х принадлежит множеству А».

А теперь перечислим три главные особенности данной машины, которые были обнаружены Крейгом и Мак-Каллохом.

Свойство 1. Множество А8 — это множество всех чисел, которые машина может напечатать.

Свойство 2. Для любого положительного целого числа n множество Л3„ является дополнением множества А3n. (При этом под символом 3-n мы понимаем 3, умноженное на

и.)

Свойство 3. Для любого положительного целого числа и множество A3.n+1 представляет собой множество An* (то есть множество всех чисел х, для которых число х*x принадлежит множеству An).

1. С помощью свойств 1—3 можно, оказывается, строго показать, что машина Фергюссона не способна доказать все истинные утверждения. Читателю предлагается найти такое утверждение, которое является истинным, но при этом не может быть доказано с помощью этой машины. Иначе говоря, мы должны найти такие числа пит (они могут быть как одинаковыми, так и разными), для которых кодовый номер утверждения nЄАn—то есть число n*m —не мог бы быть напечатан машиной, но чтобы при этом число n являлось бы элементом множества А п.

Стр.171

2. В решении задачи 1, которое приведено ниже, числа пит оба меньше 100. Имеется и другое решение этой задачи, для которого числа n, m также оказываются меньше 100 (при этом они опять могут быть как одинаковыми, так и разными). Сумеет ли читатель найти это решение?

3. Если не ограничивать сверху величину чисел n m, то сколько всего решений может быть у такой задачи? Иначе, сколько существует истинных утверждений, которые недоказуемы с помощью машины Фергюссона?[

Заключение

Фергюссон вовсе не хотел отказываться от идеи создания такой машины, которая могла бы доказывать арифметические истины, не будучи в состоянии доказывать ложные заключения, поэтому он напридумывал целую кучу таких логических машин*. Однако для каждой новой машины либо он сам, либо Крейг с Мак-Каллохом все-таки находили такое истинное утверждение, которое машина доказать не могла. Поэтому в конце концов Фергюссон отказался от мысли сконструировать чисто механическое устройство, которое было бы одновременно и точным (в указанном выше смысле.— Перев.), и могло бы доказать любое истинное арифметическое утверждение.

Итак, все героические попытки Фергюссона не увенчались успехом, однако причина этого заключалась отнюдь не в недостатке авторской изобретательности. Мы не должны забывать о том, что он жил за несколько десятилетий до знаменитых открытий таких известных логиков, как Гёдель, Тарский, Клини, Тьюринг, Пост, Черч и другие ученые, о работах которых у нас вот-вот пойдет речь. Если бы Фергюссон дожил до этих открытий, то он понял бы, что неудачи его обусловлены исключительно тем, что он пытался создать нечто по сути своей совершенно невозможное! Поэтому, отдав должное Фергюссону и его коллегам

* Некоторые из них оказались весьма интересными, и о них я надеюсь рассказать в своей следующей книге.

Стр. 172

Крейгу и Мак-Каллоху, распрощаемся с ними и перенесемся на три-четыре десятилетия вперед, в переломный 1931 год.

Решени

1. Одно из решений состоит в следующем: утверждение 75ЄА75 является истинным, но не может быть доказано машиной. И вот почему.

Допустим, что утверждение 75ЄА75 ложно. Тогда число 75 не принадлежит множеству А75- Следовательно, это число должно принадлежать множеству А25 (согласно свойству 2, множество Аn является дополнением множества ais)- Это означает (согласно свойству 3), что число 75*75 принадлежит множеству А8, поскольку 25=3X8-1-1, и, следовательно, машина может напечатать число 75*75. Иначе говоря, это означает, что утверждение 75еЛ?5 может быть доказано машиной. Таким образом, если бы утверждение 75ЄA?5 было ложным, то оно вполне могло бы быть доказано машиной. Однако нам известно по условию, что машина точна и никогда не доказывает ложные утверждения. Поэтому утверждение 75ЄA75 не может оказаться ложным, и, стало быть, оно должно быть истинным.

Далее, поскольку утверждение 75ЄА75 истинно, то число 75 действительно принадлежит множеству Аn. Поэтому оно не может принадлежать множеству А 25 (согласно свойству 2), и, следовательно, число 75 * 75 в свою очередь не может принадлежать множеству А8, поскольку если бы это было так, то тогда, согласно свойству 3, число 75 принадлежало бы множеству а25. Поскольку ясно, что число 75 * 75 не принадлежит множеству Ag, то утверждение 756А75 не может быть доказано машиной. Итак, утверждение 75ЄA75 является истинным, но оно недоказуемо с помощью машины.

2. Прежде чем рассматривать другие решения, установим следующий факт весьма общего свойства. Пусть для всего дальнейшего ключевым является множество К—это множество всех чисел х, для которых утверждение хЄАx недоказуемо машиной, или, что то же самое, множество таких чисел х, для которых число

Стр. 173

х*х не может быть напечатано машиной. Далее, множество А 75 как раз и есть такое множество К, потому что утверждение, что х принадлежит множеству Аn, равносильно утверждению, что х не принадлежит множеству A25, что в свою очередь равносильно утверждению, что число х*х не принадлежит множеству А8, где А8—это множество тех чисел, которые машина может напечатать. Итак, А 75=К. Но при этом и Аn=К, потому что утверждение, что некое число х принадлежит множеству An, равносильно утверждению, что число х*х принадлежит множеству А8 (согласно свойству 3, поскольку 73 = 3x24+1), что в свою очередь равносильно утверждению, что число х+х не принадлежит множеству А8 (согласно свойству 2). Таким образом, А7з— это множество всех тех чисел х, для которых число х*х не принадлежит множеству А8 или, что то же самое, множество всех чисел х, для которых утверждение хЄАx не может быть доказано машиной. Следовательно, А73 — это то же самое множество чисел, что и A75 поскольку оба они тождественны множеству К. Более того, для любого заданного числа n, для которого Аn=К, утверждение nЄА„ должно быть истинным, но недоказуемым с помощью машины. Это можно показать буквально с помощью тех же самых рассуждений, что и в рассмотренном нами частном случае n=75 (в еще более общей форме эти рассуждения приведены в следующей главе). Тем самым мы получаем, что утверждение 73ЄА73— это еще один пример истинного утверждения, кодовый номер которого машина напечатать не может.

3. Для любого числа n множество А9n должно совпадать с множеством n. В самом деле, множество А9.п есть дополнение множества A3n, а множество А3n в свою очередь есть дополнение множества n; следовательно, множество А9n„ совпадает с Аn, Это означает, что множество A 675 совпадает с множеством A75, и, стало быть, утверждение 675ЄА675 — это есть еще одно решение задачи. Аналогично утверждение 2175ЄA2175также является решением. Таким образом, мы получаем, что существует бесконечно много истинных утверждений, которые машина Фергюссона доказать не

Стр. 174

может: например, для любого n, которое равно произведению 75 на некоторое кратное числа 9 или произведению 73 на произвольное кратное числа 9, утверждение nЄА,, является истинным, но недоказуемым посредством этой машины.

15 Доказуемость и истина

Крупной вехой в истории математической логики стал 1931 г. Именно в этом году Гёдель опубликовал знаменитую теорему о неполноте. Свою эпохальную работу * он начинает следующими словами:

«Развитие математики в направлении все большей точности привело к формализации целых ее областей, в связи с чем стало возможно проводить доказательства, пользуясь небольшим числом чисто механических правил. В настоящий момент наиболее исчерпывающими системами являются, с одной стороны, система аксиом, предложенная Уайтхедом и Расселом в работе «Princlpia Mathematica», а с другой — система Цермело — Френкеля в аксиоматической теории множеств. Обе эти системы настолько обширны, что в них оказывается возможным формализовать все методы доказательства, используемые сегодня в математике,— иначе говоря, все эти методы могут быть сведены к нескольким аксиомам и правилам вывода. Поэтому, казалось бы, разумно предположить, что указанных аксиом и правил вполне хватит для разрешения всех математических проблем, которые могут быть сформулированы в пределах данной системы. Ниже будет показано, что дело обстоит не так. В обеих упомянутых системах имеются сравнительно простые задачи

* «Uber formal unentscheidbare Satze der «Principia Mathematica» und verwandter Systeme'I» («О формально неразрешимых предложениях «Принципов математики» и других родственных систем»), Мо-natshefte fur Mathematik und Physik, 38, 173—198.

Стр. 175

из теории обычных целых чисел, которые не могут быть решены на базе этих аксиом»*.

Далее Гёдель объясняет, что такая ситуация обусловлена отнюдь не какими-то специфическими особенностями двух упомянутых систем, но имеет место для обширного класса математических систем.

Что имеется в виду под «обширным классом» математических систем? Это выражение интерпретировалось по-разному, и соответственно по-разному обобщалась теорема Гёделя. Как ни странно, одно из самых простых и доступных для неспециалиста объяснений остается наименее известным. Это тем более удивительно, что на такое объяснение указывал и сам Гёдель во вводной части своей первой работы. К нему мы сейчас и обратимся.

Рассмотрим систему аксиом со следующими свойствами. Прежде всего пусть у нас имеются имена для различных множеств положительных целых чисел, причем все эти «именуемые», или допускающие наименование, множества мы можем расположить в виде бесконечной последовательности А1,А2, ... , An, ... (точно так же, как в системе Фергюссона, рассмотренной в предыдущей главе). Назовем число n индексом именуемого множества А, если А=n. (Таким образом, если, например, множества А2, А7 и а13 совпадают между собой, то тогда числа 2, 7 и 13 — это все индексы одного и того же множества.) Как и для системы Фергюссона, с каждым числом х и с каждым числом у мы связываем утверждение, записываемое в виде хЄАу, которое называется истинным, если х принадлежит А у, и ложным, если х не принадлежит Ау. Однако в дальнейшем мы не предполагаем, что утверждения типа хЄАу являются единственно возможными утверждениями в данной системе, поскольку могут существовать и другие. Предполагается также, что любое возможное утверждение обязательно классифицируется либо как истинное, либо как ложное.

Каждому утверждению в данной системе присваивается некий кодовый номер, который мы будем называть

* Выборочный перевод автора.

Стр. 176

геделевым номером, причем гёделев номер утверждения xЄАУ будем обозначать х*у. (Теперь уже нет нужды предполагать, что число х*у состоит из цепочки единиц миной х, за которой следует цепочка нулей длиной у; cам Гёдель фактически использовал совсем другую кодовую нумерацию. Можно пользоваться самыми разными видами кодовой нумерации, и какой вид оказывался более удобным — это зависит от конкретного вида рассматриваемой нами системы. Так или иначе, для доказательства той общей теоремы, которую мы скоро докажем, нет необходимости вводить какую-то конкретную гёделеву нумерацию.)

Определенные утверждения в данной системе принимаются как аксиомы; кроме того, вводятся также некие специальные правила, по которым можно на основании этих аксиом доказывать различные другие утверждения. Таким образом, в данной системе имеется иполне определенное свойство утверждения, называемое его доказуемостью.

Далее предполагается, что система правильна в том смысле, что каждое доказуемое в этой системе утверждение является истинным; отсюда, в частности, следует, что если утверждение xЄAу доказуемо в данной системе, то число х действительно является элементом множества Ау.

Пусть Р—это набор гёделевых номеров всех доказуемых в данной системе утверждений. Пусть опять же для любого множества чисел А его дополнение обозначается символом А (это множество всех чисел, не принадлежащих А). Наконец, через А* мы будем обозначать множество всех чисел х, для которых число x*х принадлежит А. При этом нас будут интересовать системы, для которых выполняются следующие три условия Gi, G2 и G3:

Условие g1. Множество Р допускает наименование в данной системе. Иначе говоря, существует по крайней мере одно число р, для которого Ар представляет собой множество гёделевых номеров доказуемых утверждений. (Для системы Фергюссона таким р было число 8.)

Условие g2. Дополнение любого множества, допускающего наименование в данной системе, также именуемо в этой системе. Иначе говоря, для любого

Стр. 177

числа х найдется такое число х , для которого множество А* является дополнением множества Ах. (Для| системы Фергюссона таким х' было число 3-х.)

Условие Gз. Для любого именуемого множества А множество А* также именуемо в данной системе. Иначе говоря, для любого числа x всегда найдется такое число х*, что множество А,- представляет собой, множество всех чисел л, для которых л*л принадлежит' А,. (Для системы Фергюссона таким х* было число 3x+1.)

Очевидно, что условия F1, F2 и Fз, характеризующие машину Фергюссона, представляют собой не более чем частные случаи условий G1, G2 и G3. Последние имеют большое значение потому, что они действительно выполняются для самых разнообразных математических систем, в том числе и для тех двух систем, которые рассмотрены в работе Гёделя. Другими словами, оказывается возможным расположить все допускающие наименование множества в виде бесконечной последовательности A1, A2, ... , An ... и ввести для всех утверждений некоторую частную нумерацию Гёделя, причем так, что будут выполняться условия G 1, G2 и G3. В результате все то, что является доказуемым для систем, удовлетворяющих условиям G1, G2 и G3, будет применимо ко многим другим важным системам. Теперь мы можем сформулировать и доказать теорему Гёделя в общей форме.

Теорема G. Для любой правильной системы, удовлетворяющей условиям G1, G2 и G3, должно существовать утверждение, которое является истинным, но недоказуемым в данной системе.

Доказательство теоремы G представляет собой простое обобщение доказательства, которое уже известно читателю для системы Фергюссона. Обозначим через К множество таких чисел х, для которых элемент х*х не принадлежит множеству Р. Поскольку множество Р (согласно условию gi) именуемо в данной системе, то же можно сказать и о его дополнении Р (согласно условию G:), а следовательно, и о множестве Р* (согласно условию Gз). Но множество Р* совпадает с множеством К (поскольку Р* — это множество таких чисел х, для которых х* х принадлежит Р, или, другими

Стр. 178

словами, множество таких чисел х, для которых элемент х*х не принадлежит Р). Таким образом, множество К допускает наименование в данной системе, откуда следует, что К = А* по крайней мере для одного числа k. (Для системы Фергюссона одним из таких чначений k было число 73, другим — число 75.) Таким образом, для любого числа х истинность утверждения xЄAk равносильна утверждению, что число х*х не принадлежит Р, а это в свою очередь означает, что утверждение xЄAx недоказуемо (в данной системе). В частности, если мы возьмем в качестве х число k то истинность утверждения kЄA* будет равносильна его недоказуемости в данной системе, что означает либо истинность, но недоказуемость этого утверждения, либо его ложность, но доказуемость в той же системе. Но последняя возможность исключена, поскольку мы предположили, что наша система является правильной; следовательно, указанное утверждение истинно, но недоказуемо в данной системе.

Обсуждение. В своей предыдущей книжке «Как же называется эта книга?» я рассматривал аналогичную ситуацию—остров, все жители которого делятся на рыцарей, которые всегда говорят только правду, и плутов, которые всегда лгут. При этом некоторых рыцарей мы называли признанными рыцарями, а некоторых плутов — отъявленными плутами. (Все рыцари высказывают истинные суждения, а признанные рыцари высказывают утверждения, которые не только истинны, но и доказуемы.) Далее, ни один из жителей острова не может сказать: «Я не рыцарь» — ведь рыцари никогда не лгут и, стало быть, рыцарь не станет говорить, будто он не рыцарь; плут же никогда не скажет о себе правдиво, что он не рыцарь. Именно поэтому ни один из обитателей острова никак не может заявить, что он не рыцарь. Вместе с тем некий островитянин вполне может сказать: «Я непризнанный рыцарь». Противоречия в таком заявлении нет, однако вот что интересно: сказавший это наверняка должен быть рыцарем, но непризнанным рыцарем. Дело в том, что плут никак не может сделать правдивого заявления, что он непризнанный рыцарь (поскольку он и в самом деле им не является); стало быть, говорящий должен

Стр. 179

быть рыцарем. Но раз он рыцарь, то, значит, должен говорить правду; стало быть, он рыцарь, но, как он сам утверждает,— непризнанный рыцарь. (Точно так же высказывание kЄAk выдающее свою недоказуемость в данной системе, должно быть истинным, но недоказуемым в этой системе.)

назад содержание далее




ПОИСК:




© FILOSOF.HISTORIC.RU 2001–2021
Все права на тексты книг принадлежат их авторам!

При копировании страниц проекта обязательно ставить ссылку:
'Электронная библиотека по философии - http://filosof.historic.ru'
Сайт создан при помощи Богданова В.В. (ТТИ ЮФУ в г.Таганроге)


Поможем с курсовой, контрольной, дипломной
1500+ квалифицированных специалистов готовы вам помочь