Библиотека    Новые поступления    Словарь    Карта сайтов    Ссылки





назад содержание далее

Часть 3.

определяющей смысл понятий[7].

Но хотя Эйнштейн и дал повод к развитию операцио-нализма, сам он вовсе не последовал ему в своих дальнейших исследованиях, чем и заслужил упрек Бриджмена. Свою статью “Теории Эйнштейна и операционалистская точка зрения” в упомянутом выше сборнике Бриджмен прямо начинает с этого упрека: “В этой статье делается попытка показать, что Эйнштейн в свою общую теорию относительности не перенес те уроки и то понимание, которым он сам учил нас в своей специальной теории относительности”. И это, действительно, так.

Почему же Эйнштейн отошел от операционалистской методологии?

Потому, что теория относительности не давала оснований для операцпоиалнстской методологии, как не давала она их и для позитивизма, и для принципа наблюдаемости, который позднее хотели оправдать ссылками на эйнштейновский метод построения этой теории. Напротив того, в теории относительности отражался совсем иной подход к определению содержания понятий и к структуре теорий. Размышляя над итогами теории относительности, Эйнштейн в какой-то мере, по-видимому, это осознал, что видно и из методов его защиты положений теории относительности, и из его последующих приемов исследования, и из его, правда более поздних, высказываний.

Известно, что многие выводы теории относительности подверглись резкой критике вследствие их необычности. Они действительно были необычны. Таков, например, вывод о том, что длина одной и той же линейки различна в различных инерциально движущихся системах; вызывало недоумение то, что это изменение оказывается взаимным, так что длина линейки, покоящейся в системе S и равная в ней единице, будет в инерциально движущейся системе S' укорачиваться, точно так же как длина линейки, покоящейся в системе S' и равная в ней единице, будет укорачиваться в системе S и притом в том же отношении. Достаточно эти эффекты в целях наглядности и конкретности сформулировать при помощи термина “наблюдатели, сидящие в системах S и S'”, как описание того, что они “наблюдают”, получает крайне субъективистскую форму.

Так оно и было, и это в то время вызывало огромное сопротивление физиков и философов.

Вызывали критику необычные выводы о том, что в системе, совершающей путешествие, процессы должны протекать замедленнее, чем в системе, остающейся в это время неподвижной, ввиду чего, скажем, космонавт, летавший к далекой звезде и вернувшийся обратно на Землю, оказывается “моложе” своих сверстников на Земле.

Противоречили повседневному опыту и наглядному представлению новый закон сложения скоростей, изменение массы “благодаря только движению” и т. п.

Все аналогичные выводы теории относительности казались парадоксальными с точки зрения непосредственных восприятии или привычного опыта. Многочисленные попытки связать указанные в теории закономерности поведения каждой физической категории непосредственно с изменением структуры движущегося тела не приводили к положительным результатам. В те времена сравнительно большие относительные скорости, могущие оказать экспериментально уловимый эффект, достигались только у электронов в катодных лучах (?0,1 с). Исследуя отклонение катодных лучей в магнитном поле, Кауфман установил (1902—1906) факт изменения массы быстродвижущихся электронов, но сам закон изменения не был определен из этих экспериментов. Последовал ряд работ (М. Абрагам, Дж. Герглоц, П. Герц, А. Зоммерфельд и другие), в которых авторы пытались представить механизм этого изменения (главным образом через приписывание массе электромагнитного происхождения и определение связи ее с полем). Позднее эти попытки были оставлены.

Все это свидетельствует о трудностях, с которыми было связано развитие новых представлений. Неслучайно у теории относительности на протяжении долгих десятилетий оказывалось немало противников.

Однако выводы теории оправдывались. Физики, и в первую очередь Эйнштейн, все более приходили к мысли, что справедливость новых представлений о природе и изменениях физических категорий может быть подтверждена лишь ссылкой на то, что она является логическим результатом релятивистской теории (как “релятивистский эффект”), которую физики вынуждены были создать, преследуя непосредственно другую цель — обобщить принцип относительности и факт независимости скорости света от движения его источника.

Таким образом, создание теории относительности подводило Эйнштейна к раскрытию единства физических понятий, их связи с теорией в целом. Эта связь понятий была адекватным отображением связи физических категорий в самом объекте. Например, изменение длин и длительности в инерцнально движущихся системах находит свое объяснение в том, что они существуют не сами по себе, а связаны в некую целостность через инвариантный интервал.

Со временем Эйнштейн все более укреплялся в этой позиции. Есть основания полагать, что огромное влияние в этом отношении оказали на физиков и на Эйнштейна, в частности, труды выдающегося математика Германа Минковского. В 1908 году он опубликовал работу “Основания теории электромагнитных процессов в движущихся телах”, в которой пространство и время были обобщены в единый четырехмерный “мир” с псевдоевклидовой геометрией.

Идея единства пространства и времени была изложена Минковским в известном популярном докладе “Пространство и время” (1908) обществу немецких естествоиспытателей и врачей, который он начал знаменитым афоризмом:

“Отныне пространство само по себе и время само по себе должны быть низведены до роли теней, и только некоторый вид соединения обоих должен по-прежнему сохранять самостоятельность”.

В физике проблема связи понятий и теории в такой резкой форме встала впервые. Ньютон вводил некоторые понятия — абсолютные пространство, время, движение, массу и проч.— еще до теории, как внешние определения, как условие формулировки законов. У Маха (позитивизм) все понятия выступали как символическое обозначение отличительных признаков некоторого комплекса восприятии, имели мнемоническо-служебную цель и вводились до теории. У Бриджмена (операционализм) понятия должны были прежде всего получить определение через непосредственную операцию измерения, и лишь после того как это оказывалось возможным, они могли быть использованы в теории.

Однако реальное развитие физической теории показало, что содержание физических понятий не может быть определено вне теории, до теории. В этом отношении оказались неправы и Ньютон, и Мах, и Бриджмен. Понятия должны выступать как органическая часть теории, которая в целом отвечает реальным фактам восприятии, и только через эту целостность отвечают фактам и те категории, которые она использует,— таков вывод, к которому все более склонялся Эйнштейн.

Несомненно, эта идея уже владела Эйнштейном, когда он приступал к разработке теории тяготения, которую он рассматривал как дальнейшее обобщение принципа относительности, как второй этап развития теории относительности.

ПРОБЛЕМА РЕФОРМЫ КЛАССИЧЕСКОЙ ФИЗИКИ ПОД УГЛОМ ЗРЕНИЯ ЕЕ ЦЕЛОСТНОСТИ. ТЕОРИЯ ТЯГОТЕНИЯ ЭЙНШТЕЙНА

Нельзя не видеть различия в задачах, которые ставил Эйнштейн на первом и втором этапах развития физической теории. На первом этапе была конкретная физическая задача — привести уравнения Максвелла в соответствие с требованием симметрии электромагнитных процессов и с фактом независимости скорости света от движения его источника. В результате Эйнштейн обнаружил, что разумно построенная теория вскрывает взаимосвязи понятий, о которых вне обобщающей теории и не подозревали, не подозревали именно потому, что подход к развитию науки был слишком эмпиричен.

Теперь, после получения плодотворных результатов, Эйнштейн уже на всю классическую физику стал смотреть иными глазами, глазами критика. Он увидел, что дело не только в том, что Ньютон включил в физику внеопытные понятия абсолютного пространства, времени, дальнодей-ствующих сил и проч.; о происхождении их и сам Ньютон проявлял беспокойство. Дело в том, что и все другие понятия классической физики были слишком слабо “упакованы” в единой теории, так как возникали они независимо друг от друга из разрозненного опыта. В уже упомянутой лекции “О методе теоретической физики” Эйнштейн говорил: “Ньютон, первый основатель обширной работоспособной системы теоретической физики, был еще убежден в том, что основные понятия и законы его системы происходят из опыта. Его слова hypotheses non lingo (гипотез я не строю) можно понять в этом смысле. Действительно, появившиеся в это время понятия пространства и времени не создавали никаких проблем. Понятия массы, инерции и силы и связанные с ними законы казались взятыми непосредственно из опыта. Раз эта база была принята, то и выражение для силы тяготения казалось выведенным из опыта и было основание ожидать то же самое в отношении других сил”.

Для Эйнштейна было ясно, что при таком понимании метода образования понятий и законов — из разрозненного опыта — в классической физике неизбежно должны были возникать понятия, хотя и различные по происхождению, по их связи с экспериментами, но эквивалентные по природе. Так, “специальная теория относительности” вскрыла эквивалентность массы и энергии. Очевидно, накопление таких понятий, которые позднее оказываются эквивалентными, не есть достоинство метода, в результате которого они возникали; теория построенная на основе таких понятий, не может быть совершенной.

Свою важнейшую задачу Эйнштейн видел теперь в том, чтобы реформировать классическую физику, навести в ней порядок, удалить из нее все понятия, сформулированные вне свят с теорией, а также излишние, эквивалентные понятия, которые так же не нужны теории, как автомобилю пятое опорное колесо.

Результатом таких методологических установок Эйнштейна явилась разработанная им обобщенная теория тяготения, истолкованная им как “общая теория относительности”.

Таким образом, появление этой теории не было вынуждено противоречием существующей теории с каким-либо новым экспериментом. Эйнштейн сам понимал свой путь как результат требования “внутреннего совершенства” теории, логической стройности общей картины мироздания. Именно это различие причин возникновения “специальной” и “общей” теории относительности привело к такой ситуации, которую Макс Борн в своей лекции “Физика и относительность” (1955) отмечает в следующих словах: “Специальная теория относительности была открытием в конечном счете не одного человека. Работа Эйнштейна была тем последним и решающим элементом в фундаменте, заложенном Лоренцом, Пуанкаре и другими, на котором могло держаться здание, воздвигнутое затем Минковским”. Над проблемами, возникшими в связи с электродинамикой движущихся систем, работали многие физики, в том числе и Эйнштейн, вложивший “решающий элемент” в теорию. А вот “внутренним совершенством” классической теории практически занимался только Эйнштейн. Поэтому Борн и отмечает, что “в противоположность специальной теории относительности, это была работа одного человека”.

Главная идея новой теории Эйнштейна состояла в том, чтобы пространственно-временной континуум, к идее которого привела теория относительности, представить как единую сущность внешнего физического мира.

Что выигрывает от этого физика?

В классической физике все ее законы разрознены, они связывают физические категории, представления о смысле которых возникали в различных экспериментах. В новой физике континуума все физические законы должны быть представлены как свойства этого континуума, как его метрика. Это и позволяет улучшить “концептуальный фундамент” физики, удалить из нее излишние понятия, представить ее как единую систему.

С этой новой позиции Эйнштейн рассмотрел закон тяготения Ньютона. Вместо сил тяготения он стал оперировать с полями тяготения; это уже делала и классическая физика, но там это было скорее только “формальным приемом”. Поля тяготения Эйнштейн включил в пространственно-временной континуум как его “искривление”. Метрика континуума перестала быть евклидовой (точнее псевдоевклидовой), она стала “римановой метрикой”. Тем самым из физики были удалены далыюдействующпе силы Ньютона, которые всегда считались слабым пунктом нью-тоновой физики. “Кривизна” континуума рассматривается как следствие соответствующего “распределения движущихся масс” в нем. Опираясь на идеи римановой геометрии, Эйнштейн ввел меру кривизны пространства-времени (в ковариантной форме) в виде некоторого “тензора кривизны”. Для “распределения движущихся масс” в этом континууме он также нашел некоторую специфическую меру — “тензор энергии-импульса”. Важнейшим результатом всех этих исследований Эйнштейна является установление взаимосвязи между тензором энергии-импульса (распределением движущихся масс) и тензором кривизны пространства-времени (метрикой континуума). Найденное уравнение играет здесь роль, аналогичную роли ньютонова уравнения движения масс в обычном евклидовом пространстве.

Понятия, которыми оперирует в этой теории Эйнштейн, имеют весьма абстрактный характер. Но схема взаимосвязей здесь довольно проста. “Распределение движущихся масс” в континууме определяет его “кривизну”. Кривизна континуума определяет “геодезические линии” в нем — “линии кратчайших расстояний”. Кривизна, геодевические линии континуума,— это его существенные свойства, они определяют происходящие в нем процессы. Так, массы, не создающие большого поля, перемещаются в континууме только вдоль геодезических линий.

В евклидовом пространстве геодезическими линиями являются прямые. Согласно ньютоновой механике вдоль этих прямых происходит инерционное движение. Но рассмотрение всех других движений требует в ньютоновой 1 механике введения новых физических категорий — сил, определения закона их действия, возникает проблема передачи действия сил на расстояние и т. д. и т. п. К тому же теория тяготения Ньютона не объясняет полностью все процессы, связанные со взаимодействием масс. Так, например, констатируя наличие вращения перигелия планет, близких к Солнцу (Меркурий), она не приводит к точной величине этого вращения. Теория Ньютона отражает действительность лишь для слабых полей и небольших скоростей масс.

Тот факт, что теория Эйнштейна не требует введения сил тяготения, а взаимодействие масс учитывается в ней через характер искривления пространственно-временного континуума, т. е. через его общее свойство, раскрывает новые возможности теории. В самом деле, общие свойства континуума, раз они найдены, определяют характер любых физических процессов, в нем происходящих. Например, из этого следует, что вдоль геодезических линий континуума должны перемещаться не только массы, но и лучи света; если геодезические линии континуума искривлены, то и распространение света не будет прямолинейным. Это должно обнаружиться в областях континуума, в которых искривление линий достаточно велико, например при прохождении луча вблизи Солнца, где поле тяготения велико сравнительно с полем вблизи Земли. Эйнштейн рассчитал, что луч звездного света, проходя вблизи Солнца, должен испытывать отклонение от прямолинейного пути на 1,75 угловых секунд. Этот вывод теории Эйнштейна был подтвержден во время полного солнечного затмения 29 мая 1919 года, когда две английские экспедиции — одна на западном побережье Африки, а другая в северной части Бразилии — получили фотографии звезд, видимых вблизи закрытого солнечного диска.

Теория Эйнштейна предсказала также смещение к красному концу спектра спектральных линий излучения, проходящего в поле тяготения звезд; это смещение особенно заметно при прохождении излучения вблизи звезд, обладающих большой массой, где, следовательно, поле тяготения велико. Теория дала расчет и точной величины вращения траектории Меркурия.

Вообще теория тяготения Эйнштейна точнее, чем теория Ньютона, отображала процессы в области сильных полей при наличии быстродвижущихся масс.

Таким образом, несмотря на огромную абстрактность, чуждую мышлению многих физиков того времени, теория Эйнштейна оказалась плодотворной, она подвинула знание природы вперед. Именно в этом сочетании абстрактности и плодотворности лежит причина исключительной мировой славы Эйнштейна как ученого. После подтверждения предсказаний обобщенной теории тяготения об Эйнштейне заговорили как об ученом, который одной только силой своего мышления раскрывает неизвестные до того тайны природы.

Но одновременно успех теории утвердил Эйнштейна в его теоретико-познавательных взглядах. Разработка теории относительности и теории тяготения убедила Эйнштейна в том, какое огромное значение имеет теория, взятая в целом.

Несомненно, что он убедился в этом в ходе исследований, то есть уже в первом и втором десятилетии нашего века. Позднее, в своем “Ответе на критику” Эйнштейн дважды возвращается к объяснению своей позиции по этому вопросу. На критику Рейхенбаха он отвечает в форме диалога между Рейхенбахом и неким Непозитивистом (!), и от имени последнего ставит вопрос: “А почему отдельные встречающиеся в теории понятия вообще требуют какого-то отдельного оправдания, если они необходимы только в рамках логической структуры теории и теория утверждается только в своей целостности?”

А по поводу упрека Бриджмена в отходе от операционализма Эйнштейн еще более точно определяет свою позицию: “Чтобы логическая система могла рассматриваться как физическая теория, нет необходимости требовать, чтобы все ее утверждения могли толковаться независимо и чтобы они могли быть независимо “проверяемы” “в операционалистском смысле”, фактически это никогда еще не было выполнено ни в одной теории, да и не может быть выполнено вообще. Чтобы некоторую теорию можно было рассматривать как физическую, необходимо только, чтобы она вообще заключала в себе эмпирически проверяемые утверждения” (курсив Эйнштейна).

Итак, реформа классической (ньютоновой) теории тяготения, проведенная Эйнштейном под углом зрения увязывания физических понятий в единой теории (обобщенной теории тяготения), привела к положительным результатам и подтвердила роль теории как целоcтности. Разъясняя позже фактически реализованную их линию, Эйнштейн уже в явной форме подчеркивает это значение теории.

ОЦЕНКА ДИФФЕРЕНЦИАЛЬНОГО ЗАКОНА КАК ЕДИНСТВЕННОЙ ФОРМЫ ПРИЧИННОСТИ

Континуум Эйнштейна с его римановой метрикой явился более обобщенным образом объективной реальности, чем ньютоновы представления, согласно которым разделенные расстоянием массы действовали друг на друга дальнодействующими силами, обратно пропорциональными их взаимному расстоянию. Обобщение Эйнштейна явилось успешной попыткой удалить из теории Ньютона некоторые ее слабые стороны, например представление о дальнодействующих силах, о независимости метрики и законов движения и другие.

Но вместе с тем Эйнштейн рассматривал себя вовсе не как ниспровергателя классической физики, а только как реформатора ее, совершенствующего ее основы.

В теории Ньютона он видел и такие существенные стороны, которые, по его мнению, должны были остаться незыблемыми во всякой будущей теории, какие бы общие формы она ни принимала. Он видел гениальность Ньютона в том, что этот основатель классической физики в своих законах движения сумел выразить количественным образом взаимосвязь каждого состояния движения тела в данный момент с его состояниями в предшествующий момент в смежной точке пространства и в последующий момент в другой смежной точке. Пространство, время и движение в физике Ньютона выступали как непрерывные сущности, а связи между состояниями выражались в форме дифференциальных уравнений. Величайшая заслуга Ньютона состояла в том, что он открыл метод дифференциального исчисления, однозначно определяющий взаимосвязи состояний тела в его движении. В ньютоновых дифференциальных уравнениях движения Эйнштейн видел “удовлетворение потребности современных физиков” в причинной связи. Естественно, что заслугу открытия математической формы причинной связи он целиком относил к Ньютону.

В статье “Механика Ньютона и ее влияние на форму теоретической физики” (1927) Эйнштейн писал: “...До Ньютона не существовало законченной системы физической причинности, которая была бы в состоянии как-то передать основные черты опытного мира”. Законы Кеплера, разъяснял он дальше, давали ответ на вопрос о том, как движутся планеты, но они не удовлетворяли потребности показать причинную зависимость; эти законы выступали как три логически независимых друг от друга правила, “лишенные всякой внутренней связи”. Только Ньютон, создав дифференциальное исчисление, дал необходимую форму закону причинной взаимосвязи. “Дифференциальный закон,— писал там же Эйнштейн,— есть та единственная форма, которая полностью удовлетворяет потребность современных физиков в причинности. Ясная концепция дифференциального закона есть величайший духовный подвиг Ньютона”. Не столь существен спор о том, кто первый открыл дифференциальное исчисление — Ньютон или Лейбниц, но существенно то, что для Ньютона открытие дифференциального исчисления было необходимостью именно потому, что оно, по Эйнштейну, является адекватной формой причинной связи. Полная причинная концепция была получена после того, как наряду с уравнением движения была дана сила, действующая на массу и определяемая положением всех других масс.

Теория относительности (“специальная”) не только опиралась на ньютонову динамическую трактовку причинности, но и уточнила ее в одном отношении: она указала, что события М и N могут находиться в причинно-следственном отношении друг к другу лишь в том случае, если эти события разделены промежутком времени, достаточным для передачи действия от места события М до места события N с конечной скоростью, не превышающей скорости света. Это уточнение вводит фактор действия между событиями М и N и подчеркивает связь пространства и времени в одном континууме. Уточненная теорией относительности формулировка причинности использована в ней в качестве исходного пункта для анализа важнейшего понятия теории — одновременности.

Из сказанного следует, что классическое представление о причинной связи органически входит в самую структуру теории относительности.

Теория тяготения Эйнштейна в этом отношении не отличается от его теории относительности. И там, и здесь физические процессы выражаются как процессы, происходящие в континууме — некотором непрерывном пространственно-временном образовании; только в теории относительности этот континуум имеет евклидову (точнее, псевдоевклидову) метрику, а в теории тяготения – риманову. И там, и здесь уравнения движения представляют собой дифференциальные уравнения, связывающие между собой смежные в пространстве и времени события (в “Эволюции физики” эти уравнения названы “структурными”). Континуумы Эйнштейна с различной метрикой описываются дифференциальными уравнениями в частных производных, что характерно для описания процессов, происходящих в поле. Эти континуумы и представляют собой некоторый непрерывный “полевой” образ.

Бесконечно малые непрерывные изменения аргументов в уравнениях с частными производными в принципе ничем не отличаются, как казалось Эйнштейну, от бесконечно малых изменений аргументов в уравнениях с обычными производными. Поэтому Эйнштейн полагал, что его теория тяготения сохраняет неизменными классические представления о физической причинности, согласно которой однозначно связываются события, бесконечно близкие друг к другу в пространстве и во времени. Более того, поскольку созданная им теория тяготения по своей структуре наиболее совершенна, классическая форма причинной связи представлялась ему всеобщей.

Успешные предсказания теории тяготения должны были утвердить его в этом убеждении.

РАЦИОНАЛЬНЫЕ ПУТИ ПОСТРОЕНИЯ ФИЗИЧЕСКОЙ ТЕОРИИ

Итак, профессиональный опыт Эйнштейна утверждает его в мысли, что понятия органически связаны с теорией, через нее получают свое содержание и оправдание. А теория отражает мир лишь как целое.

Возникает вопрос: как же строится сама теория?

Мах, служивший Эйнштейну примером критика абсолютных категорий ньютоновой физики, отвечал на этот вопрос просто. Понятие – чисто психическое образование. Характерная черта понятия – это воспоминание о каком-либо постоянном комплексе восприятии и выделение в нем главных восприятии, по которым вспоминается весь комплекс (абстрагирование, по Маху). Научные теории имеют своей целью “упорядочить” множество фактов восприятии, которые без такого упорядочения невозможно удержать в памяти. Уже в таком процессе, как падение тела, содержится множество фактов восприятии, ибо каждому мгновению времени соответствует своя высота падающего тела. Чтобы обозреть все эти соответствия, пришлось бы составить бесконечную таблицу. Но такую таблицу нельзя ни исчерпать, ни удержать в памяти! На помощь приходит упорядочивающая теория; она сжимает бесконечную таблицу в одну формулу S=gt2/2, дает правило, по которому мы всегда можем найти путь S, пройденный падающим телом, для любого заданного момента. “Но это правило, эта формула, этот “закон”,— писал Мах в своем раннем труде “Принцип сохранения работы”,— вовсе не имеет более существенного значения, чем все отдельные факты, вместе взятые. Все значение его заключается только в удобстве применения. Оно имеет экономическое значение”.

Итак, теория, по Маху, не заключает в себе ничего более, чем все отдельные “факты восприятия”, она есть только экономная запись их ради облегчения памяти. Эйнштейн не мог пойти в этом вопросе за Махом. Он уже увидел в теории нечто большее, чем только сжатую запись “фактов восприятии”: она дает “картину мира”, его связи, которые непосредственно в фактах восприятии усмотреть нельзя.

Не дает этой картины и теория, построенная на физических экспериментах. Пример такой теории Эйнштейн усматривал в теории тяготения Ньютона. Она дала многое, но ведь Эйнштейну пришлось ее реформировать, поскольку она содержала много понятий, не нужных для обобщенной совершенной теории. Такая теория хотя и имеет “внешнее оправдание”, поскольку опирается на опыт, но она внутренне несовершенна.

Необходимость преобразования классической теории тяготения и успешный опыт построения новой реформированной теории подсказывали ему вывод: непосредственный опыт не ведет к однозначной теории. Эйнштейн уже давно пришел к этому выводу и руководствовался им в теоретической работе, но наиболее резко сформулировал его в “Творческой автобиографии”, в которой обозревал пройденный путь: “Теория тяготения научила меня и другому: собрание эмпирических фактов, как бы обширно оно ни было, не может привести к таким сложным уравнениям (поля тяготения.— С. С.). На опыте можно проверить теорию, но нет пути от опыта к построению теории”.

Здесь мы видим и прямую ссылку на свой профессиональный опыт, на свой метод построения теории тяготения (значение профессионального опыта мы подчеркивали выше), и резкое отрицание пути от опыта к построению теории. То, что содержит опыт, и взаимные соотношения опытных данных, находят свое выражение только в выводах теории; выводы теории, действительно, должны соответствовать опыту, иначе теория окажется пустой схемой. Опыт выступает лишь как мера оценки теории и лишь после того, как теория создана.

Но если от опыта нет путей к построению теории, то каково же ее происхождение?

В лекции “О методе теоретической физики” Эйнштейн говорил: “В том, что такое отражение (опыта — в выводах теории.— С. С.) возможно, состоит единственная ценность и оправдание всей системы, и особенно понятий и фундаментальных законов, лежащих в ее основе. В остальном эти последние суть свободные изобретения человеческого разума, которые не могут быть оправданы ни природой этого разума, ни каким-либо другим видом априори”. Физик отыскивает такие фундаментальные понятия и законы, которые дальше логически несводимы. “Важнейшая цель теории состоит в том,— продолжал Эйнштейн,— чтобы этих несводимых элементов было как можно меньше и чтобы они были как можно проще, однако так, чтобы это не исключало точного отображения того, что содержится в опыте”.

Здесь мы видим выражение двух важных гносеологических идей, которые Эйнштейн считал выводом из своего метода построения теории тяготения. Первая идея состоит в том, что понятия и теории суть свободные изобретения разума, вторая — в том, что задача теоретика состоит в отыскании несводимых далее простейших элементов, фундаментальных понятий, которые должны быть положены в основу теории.

Идея о том, что понятия и теории суть свободные изобретения разума,— не случайное высказывание Эйнштейна. Эту идею можно найти почти во всех его работах, в которых обсуждаются методологические проблемы, начиная со статей периода построения теории тяготения, продолжая книгой “Эволюция физики”, написанной для массового читателя, и кончая его “Творческой автобиографией”

Несомненно, что идею о том, что понятия и теории суть свободные изобретения разума, Эйнштейн противопоставлял кантианской идее об априорности знания, желая подчеркнуть этим, что понятия (например, пространства, времени) создаются не в силу природы разума, а благодаря его деятельности. Это противопоставление видно из приведенной выше фразы. Но несомненно также, что он противопоставлял эту идею другой идее, а именно, что понятия и теории являются для нас принудительными в той мере, в какой они являются необходимым следствием анализа экспериментального материала, опыта. Но случайно поэтому против эйнштейновской трактовки понятий и теорий возражали даже друзья Эйнштейна, несогласные с его трактовкой роли опыта. Например, Макс Борн говорил в докладе “Альберт Эйнштейн и световые кванты” (1955): “Сам Эйнштейн не устает подчеркивать, что не существует однозначного логического пути от фактов опыта к теоретическим системам физики; последние, по его мнению, суть дети свободной фантазии. И все же несомненно, что ценность теории тем выше, наше доверие к ней тем больше, чем меньше в ней свободы выбора, чем больше ее логическая принудительность”.

Успехи в построении обобщенной теории тяготения Эйнштейн относил за счет правильного подбора фундаментальных понятий, положенных в ее основу. Но теперь он и несовершенство ньютоновой физики рассматривает как результат плохого подбора фундаментальных понятий. Ньютону и его последователям только казалось, что они применяют единственно возможные понятия, связанные с опытом. На самом же деле понятия классической физики имеют не опытное происхождение, а все то же свободное творчество разума. Но только обычно этот факт не осознается до конца, что и приводит к несовершенной теории. В уже упомянутой лекции “О методе теоретической физики”, развивая идею о том, что Ньютон и его последователи рассматривали понятия и законы классической физики как непосредственно связанные с опытом, Эйнштейн продолжал: “Большинство естествоиспытателей тех времен были проникнуты идеей, что фундаментальные понятия и основные законы физики не были в логическом смысле свободными изобретениями человеческого разума и что они могли быть выведены из экспериментов посредством “абстракции”, т. е. логическими средствами”. Эйнштейн считает эту идею ошибочной, правда, он сознает, что другого понимания в то время быть не могло. “Ясное осознание неправильности этого понимания по существу принесла только общая теория относительности (опять профессиональный опыт! – С. С.). Эта теория показала, что на фундаменте понятий, сильно отличающемся от ньютонова, можно соответствующий круг опытных фактов объяснить даже более удовлетворительным и совершенным образом, чем это было возможно на ньютоновой основе”.

Подобную же мысль Эйнштейн высказывает и в “Творческой автобиографии”: “Предрассудок, который сохранился и до сих пор, заключается в убеждении, будто факты сами по себе, без свободного теоретического построения, могут и должны привести к научному познанию. Такой самообман возможен только потому, что не легко осознать что и те понятия, которые благодаря проверке и длительному употреблению кажутся непосредственно связанными с эмпирическим материалом, на самом деле свободно выбраны”.

Итак, по Эйнштейну, независимо от того, как Ньютон и его последователи сами понимали истоки теории, фактически они строили ее на фундаменте некоторых свободно выбранных и потому необязательных понятий; это были понятия абсолютного пространства, времени, движения, материальной точки, тяжелой и инертной масс, дальнодействующих сил, ускорения, инерции, энергии и т. д.

Выводы теории, построенной на этих понятиях, действительно подтверждались опытом. Но теория оказалась несовершенной. В ней некоторые понятия оказались искусственными, органически несвязанными в развитой затем теории, они были только внешними условиями для теории. Некоторые другие понятия оказались попарно эквивалентными друг другу.

Теория тяготения Эйнштейна рассматривалась им как попытка создать другую систему фундаментальных понятий, увязанных в единой теории. Эта теория охватывает тот же опыт. Но фундамент ее очищен, выражаясь языком оптиков, от “привидений”, а потому связи в ней, ведущие от фундаментальных понятий к опыту, другие. Эта теория отличается от первой своим “внутренним совершенством”; одного критерия “внешнего оправдания” оказывается недостаточно, ибо теорий, отвечающих этому критерию, т. е. охватывающих одну и туже совокупность опыта, может быть несколько и, возможно, даже множество.

Эйнштейн говорит об этих критериях неоднократно, в частности, в “Творческой автобиографии”, где он признает “недостаточную определенность” своих утверждений в отношении критерия “внутреннего совершенства”. Ясно, однако, что поиски критерия теории, отвечающей требованию “внутреннего совершенства”, это прежде всего поиски наиболее совершенного фундамента теории, исходных категорий и законов, на которые она опирается. Мы уже видели выше, каким мыслился этот фундамент: конечных несводимых элементов должно быть как можно меньше и они должны быть как можно проще.

В самой последней своей работе, посвященной методам теоретической физики,— во втором приложении к третьему изданию “Сущности теории относительности” (1950) – Эйнштейн писал: “Одна теория отличается от другой главным образом выбором “кирпичей” для фундамента, т. е. ни к чему не сводимых основных понятий, на которых построена вся теория”.

Эйнштейн указывает дальше, как менялся фундамент физики: “В классической теории (механика) такими основными понятиями являются: материальная точка, сила взаимодействия между материальными точками (потенциальная энергия) и инерциальная система (последняя составляется из декартовой системы координат и временной координаты). С ростом наших знаний об электромагнитном поле к числу основных понятий наравне с материальной точкой (вещество) прибавилось понятие поля, рассматриваемого как второй носитель энергии. Специальная теория относительности “предполагает далее, что мы можем отбросить концепцию материальной точки и иметь дело только с концепцией поля”. Общая теория относительности “вовсе отбросила понятие инерциальной системы”.

Основную тенденцию эволюции физики Эйнштейн видит именно в улучшении отбора “„кирпичей" для фундамента физики”. Это является лейтмотивом его (совместно с Инфельдом) книги “Эволюция физики”. До теории относительности, пишут в ней авторы, еще можно было утверждать, что между веществом и полем имеется качественное различие; вещество имеет массу, в то время как поле ее не имеет: поле представляет энергию, вещество представляет массу. Теория же относительности, установив эквивалентность массы и энергии, показала, что вещество отличается от поля лишь большей концентрацией энергии. “Но если это так, то различие между веществом и полем скорее количественное, чем качественное. Нет смысла рассматривать вещество и поле как два качества, совершенно отличные друг от друга”.

На основе качественного отождествления вещества и поля авторы стремятся построить “новую философскую основу” естествознания. Они пишут: “Мы не можем построить физику на основе только одного понятия — вещества. Но деление на вещество и поле, после признания эквивалентности массы и энергии, есть нечто искусственное и неясно определенное. Не можем ли мы отказаться от понятия вещества и построить чистую физику поля? То, что действует на наши чувства в виде вещества, есть на деле огромная концентрация энергии в сравнительно малом пространстве. Мы могли бы рассматривать вещество как такие области в пространстве, где поле чрезвычайно сильно. Таким путем можно было бы создать новую философскую основу (естествознания.—С.С.). Ее конечная цель состояла бы в объяснении всех событий в природе структурными законами, справедливыми всегда и всюду. С этой точки зрения брошенный камень есть изменяющееся поле, в котором состояния наибольшей интенсивности поля перемещаются в пространстве со скоростью камня. В нашей новой физике не было бы места для поля и вещества, поскольку единственной реальностью было бы поле” (стр. 201).

Итак, главная физическая концепция Эйнштейна состоит в следующем. Все процессы, происходящие в природе, должны быть выражены в единой полевой теории. Эта теория свободно конструируется разумом на фундаменте свободно отобранных понятий. Теория должна отвечать определенным требованиям: быть внутренне совершенной, связывать события однозначным образом, приводить к выводам, не противоречащим опыту.

РАЦИОНАЛИЗМ И КАНТИАНСТВО В ГНОСЕОЛОГИИ ЭЙНШТЕЙНА

Постижение роли теории как целостности, в которой каждая физическая категория играет служебную роль,— большое достижение современной теоретической мысли. Труды Эйнштейна,— впрочем, не одного только его,— сильно способствовали усвоению этой истины.

Но мы видели, что Эйнштейн отрицал путь от опыта к построению теории. Тот путь, который подсказывал Мах, не мог удовлетворить Эйнштейна. При всей своей высокой оценке маховской критики априорных понятий ньютоновой физики, Эйнштейн не мог принять тезис позитивизма о существовании только мира ощущений, о понятиях как психических образованиях, о теориях как экономической записи все тех же фактов восприятии. Эйнштейн сам создавал теории и вовсе не таким путем, какой указывал Мах; весь профессиональный опыт Эйнштейна выражал внутренний протест против маховского опрощения проблемы происхождения понятий и теорий. Он вел к более глубоким выводам. Если образование теории — не такая опрощенная операция с “фактами восприятии” и “комплексами восприятии”, как указывал Мах, а логический процесс, в результате которого возникает целостная логическая система, выводы которой совпадают с новыми комплексами ощущений, то это действительно вселяет “веру в существование внешнего мира, независимого от воспринимающего субъекта”, в то, что и теория, и ощущения выражают именно этот мир.

Но структура этого мира постигается не чувствами, а разумом.

Таким образом, Эйнштейн в своей профессиональной деятельности, как физик-теоретик, подошел ближе к рационализму, чем к позитивизму. Не случайно он высказывал симпатии к выдающемуся рационалисту XVII века — Спинозе. Но, пожалуй, его метод ближе к рационализму старшего современника Спинозы – Декарта.

Как в наше время Эйнштейн брал за образец научного метода геометрический метод Евклида и математики вообще (Эйнштейн говорит об этом и в лекции “О методе теоретической физики” и в “Творческой автобиографии”), так в свое время и Декарт опирался на геометрический метод (как известно, геометрия была профессией Декарта, он положил начало аналитическим методам в ней). В “Рассуждении о методе для руководства разума и отыскания истины в науках” (1637) Декарт писал: “Те длинные цепи простых и легких рассуждении, которыми обычно пользуются геометры, чтобы дойти до своих наиболее трудных доказательств, дали мне случай представить себе, что все вещи, способные стать предметом знания людей, стоят между собою в такой же последовательности.

Если таким образом остерегаться принимать за истинное что-либо, что таковым не является, и соблюдать всегда порядок, в каком следует выводить одно из другого, то нет таких отдаленных вещей, которых нельзя было бы достигнуть, и таких сокровенных, которых нельзя было бы открыть”.

В этой рационалистической схеме Декарта все вещи стоят между собой в той же последовательности, что и в геометрии, и в ней логические следствия схемы Декарта совпадают с опытом. Декарт (как и Эйнштейн в наше время) искал исходные предпосылки познания, из которых он мог бы вывести все знание: “Я старался найти принципы или первые причины всего, что существует или может существовать в мире, пользуясь для этой цели рассмотрением бога, сотворившего его, и выводя все лишь из некоторых семян истины, естественно находящихся в нашей душе. Потом я исследовал, каковы первые и самые обыкновенные следствия, которые можно вывести из этих причин: и кажется мне, что таким путем я нашел небо, светила, звезды и на них воду, воздух, огонь, минералы и некоторые другие предметы, наиболее общие и простые, а потому и более доступные познанию”.

Как известно, Декарт признал невозможным практически провести эту логическую нить до “самых отдаленных вещей”, ибо хотя вещи и стоят между собой в геометрической последовательности, но где-то эта последовательность становится неоднозначной, и какая ветвь из этих последовательностей реализована в природе — человеческий разум логически не может решить. “Следовательно, обратить их (разнообразные частные следствия.— С. С.) в нашу пользу можно, только восходя от следствий к причинам и производя множество различных опытов”.

Декарт верил в рациональную структуру мира, но он признал, что отразить ее в мышлении возможно только в принципе, практически же необходимо восходить от следствий к причинам. Позиция Эйнштейна отличается тем, что в этом вопросе он не шел ни на какие компромиссы. Рационализм Эйнштейна отличен от классического и в другом отношении. В классическом рационализме (Декарта) все следствия выводятся из начальных принципов, они развертываются в последовательную цепь, в которой каждое звено вытекает из предыдущего и каждое из них может быть сопоставлено с реальным миром.

Эйнштейн же исходил из того, что физическая теория представляет собой замкнутую логическую структуру и потому может быть проверена только в целом, в ее конечных выводах. Следовательно, теория не развертывается в последовательную цепь следствий, в которой может быть проверено каждое звено. До получения конечных выводов исследователь творит теорию чисто логически. Не случайно Эйнштейн всю жизнь настаивал на том, что теория — это свободное изобретение разума.

Что, однако, означают слова “проверка выводов теории”?

При обсуждении гносеологических проблем Эйнштейн не выдвигает в качестве решающего критерия познания активное взаимодействие человека с внешним миром, изменение внешнего мира на основе познания. Он сравнивает выводы теории с миром восприятии, довольствуясь сознанием того, что восприятия как-то связывают человека с внешним миром. Как относится свободно созданная разумом теория к внешнему миру — это можно судить по тому, как она объясняет, “упорядочивает” мир ощущений, который, несомненно, вызывается в нас внешним миром. Подтверждение последнего факта Эйнштейн видит в том, что наши ощущения имеют “надличный” (или внеличный) характер, т. е. одни и те же ощущения в одинаковых обстоятельствах присущи не одному человеку, а ряду людей.

Таким образом, по Эйнштейну, теория возникает не из опыта, а свободно изобретается разумом на основе более или менее совершенного отбора понятий — “кирпичей” фундамента — и, минуя внешний мир, накоротко замыкается непосредственно с миром ощущений, с тем “надличным”, что в нем встречается, объясняет и “упорядочивает” его.

Что касается самого внешнего мира, то он представляется Эйнштейну загадкой. Он находит эту идею — мир есть загадка — очень ценной и указывает, что она идет от Канта. В “Ответе на критику” Эйнштейн пишет: “Я не был воспитан в традициях Канта и довольно поздно пришел к пониманию того действительно ценного, что имеется в его учении, наряду с заблуждениями, которые теперь совершенно очевидны. Оно заключено в утверждении: “реальное нам не дано, а загадано (в виде загадки)”. Это, очевидно, означает: для охвата межличного существует умозрительная конструкция, основание которой лежит исключительно в ней самой. Эта умозрительная конструкция относится именно к “реальному” (по определению), и все дальнейшие вопросы о “природе реального” бессодержательны”.

Более популярно эта концепция изложена в книге “Эволюция физики”. В ней авторы пишут: “Физические понятия суть свободные творения человеческого разума и не однозначно определены внешним миром, как это иногда может показаться. В нашем стремлении понять реальность мы отчасти подобны человеку, который хочет понять механизм закрытых часов. Он видит циферблат и движущиеся стрелки, даже слышит тиканье, но он не имеет средств открыть их корпус. Если он остроумен, он может нарисовать себе некую картину механизма, которая отвечала бы всему, что он наблюдает, но он никогда не может быть вполне уверен в том, что его картина единственная, которая могла бы объяснить его наблюдения. Он никогда не будет в состоянии сравнить свою картину с реальным механизмом, и он не может даже представить себе возможность или смысл такого сравнения. Но он, конечно, уверен в том, что по мере того, как возрастает его знание, картина реальности становится все проще и проще и будет объяснять все более широкий ряд его чувственных восприятии. Он может даже верить в существование идеального предела знаний и в то, что человеческий разум приближает этот предел. Этот идеальный предел он может назвать объективной истиной” (стр. 30).

Теперь перед нами вполне законченная картина мира и путей его познания, как представлял их Эйнштейн. В этой картине, действительно, отведено место всем философским направлениям — реализму (точнее, материализму) и позитивизму, кантианству и рационализму и, несомненно, элементам ряда других философских направлений. Эйнштейн видел в этом достоинство философских взглядов естествоиспытателя, выражение необходимости для него считаться не с “односторонней философской схемой”, а с реальным разносторонним процессом познания.

В этой главе мы проследили, как зарождалась гносеология Эйнштейна из его понимания собственного опыта построения физических теорий. В следующей главе мы рассмотрим вопрос о том, оправдалась ли эта гносеология, когда он стал руководствоваться ею в трактовке уже созданных физических теорий, а также в разработке новых.

[1] Перевод опубликован в журнале “Успехи физических наук”, т. LIX, в. 1, 1956. Заглавие “Творческая автобиография” дано переводчиками — В. А. Фоком и А. В. Лермантовой; сам автор озаглавил эту работу скромнее: “Autobiographisches” — “Нечто автобиографическое”.

[2] У Эйнштейна были к этому своп основания, о которых будет сказано ниже.

[3] В этой статье нет возможности и необходимости обсуждать трактовку этих проблем отдельными физиками и школами.

[4] Здесь и повсюду в последующем, если нет оговорок, курсив принадлежит мне.

[5] См. С. Суворов, Макс Борн и его философские взгляды, в книге: Макс Борн, Физика в жизни моего поколения, ИЛ, 1963, а также: С. Суворов, Проблема “физической реальности” в копенгагенской школе, Успехи физических наук, т. LXII, в, 2, июнь 1957.

[6] Курсивная разрядка — выделение Эйнштейна.

[7] Критика операционализма дана в статье автора “Операционализм”, Большая Советская Энциклопедия, 2-е изд.

назад содержание далее



ПОИСК:




© FILOSOF.HISTORIC.RU 2001–2023
Все права на тексты книг принадлежат их авторам!

При копировании страниц проекта обязательно ставить ссылку:
'Электронная библиотека по философии - http://filosof.historic.ru'