Библиотека    Новые поступления    Словарь    Карта сайтов    Ссылки





назад содержание далее

Часть 2.

Отсюда следует, впрочем, исключить некоторые частицы. Те из них, которые с самого начала были значительно больше остальных, не могут так легко разделяться. Точно так же частицы, имевшие очень неправильную и неудобную фигуру, вместо того чтобы ломаться и округляться, соединялись с другими частицами. Эти частицы сохранили форму третьего элемента и послужили материалом для образования планет и комет, о чем я буду говорить ниже.

Далее, надо заметить, что материя, образовавшаяся из частиц второго элемента, по мере того как последние, округляясь, ломали и сглаживали острые вершины своих углов, необходимо должна была получить гораздо более быстрые движения, чем эти частицы. Вместе с тем она должна была приобрести способность легко делиться и менять в любой момент свою фигуру, чтобы приспособляться к фигуре того места, где она находится. Таким образом эта материя приняла форму первого элемента.

Я говорю, что она должна была приобрести гораздо более быстрое движение, чем частицы второго элемента. Причина этого очевидна. Для того чтобы уходить в стороны через очень узкие проходы из маленьких пространств между частицами второго элемента, по мере того как последние приближались друг к другу, материя эта должна была проходить за то же время гораздо больший путь, нежели эти частицы.

Следует заметить, что первого элемента имеется больше, чем это необходимо для заполнения небольших промежутков, непременно остающихся вокруг круглых частиц второго элемента. Поэтому излишек его должен переместиться к центрам, вокруг которых вращаются частицы второго элемента, потому что они занимают все другие, более отдаленные от центра места. Первый элемент должен образовать в этих центрах круглые, совершенно жидкие и легкие тела. Непрерывно вращаясь в том же направлении, что и частицы окружающего их второго элемента, но значительно быстрее их, тела эти способны усилить движение тех частиц, к которым они ближе всего, и толкать их во все стороны, направляя от центра к периферии; в свою очередь частицы эти также толкают друг друга. Это происходит благодаря одному действию, которое я должен разъяснить возможно точнее, ибо предупреждаю вас наперед, что именно это действие мы будем считать светом. Точно так же как круглые тела, составленные из материи совершенно чистого первого элемента, мы будем счи-

209

тать одно Солнцем, другие - неподвижными звездами того нового мира, который я вам описываю, так и материю второго элемента, вращающуюся вокруг них, мы будем считать небесами.

Представьте себе, например, что (рис. 2) точки S, Е, Е, А суть центры, о которых я говорю, и что вся материя, заключенная в пространстве FGGF, есть небо, вращающеес

Рис. 2

вокруг Солнца, обозначенного S, и что вся материя пространства HGGH представляет собой другое небо, вращающееся вокруг звезды, обозначенной Е, и т. д. Следовательно, имеется столько же различных небес, сколько звезд. А так как число последних неопределенно велико, то и число небес также неопределенно велико. Небесный свод представляет собой не что иное, как лишенную толщины поверхность, отделяющую эти небеса одни от других

210

Представьте себе также, что частицы второго элемента, находящиеся около F или G, обладают большей скоростью, чем частицы, находящиеся около К или L, т. е. что их скорость мало-помалу уменьшается, начиная от внешней поверхности каждого неба до какого-нибудь определенного места, например сферы КК вокруг Солнца и сферы LL вокруг звезды Е, а затем вследствие движения находящихся в центре звезд понемногу увеличивается по мере приближения к центрам этих небес. Таким образом, в то время как частицы второго элемента, находящиеся около К, имеют возможность описать полный круг вокруг Солнца, частицы, находящиеся около Т, которые, как я предполагаю, в десять раз ближе к Солнцу, имеют возможность описать здесь не только десять кругов, что они сделали бы, если бы имели одинаковую с первыми частицами скорость, но даже, возможно, более тридцати. В свою очередь частицы, находящиеся около F или G, которые, как я полагаю, в две или три тысячи раз дальше от центра, чем К, вероятно, могут описать более шестидесяти кругов. Отсюда вы можете уже заключить, что планеты, находящиеся выше всех, должны двигаться медленнее, чем те, которые находятся ниже, т. е. ближе к Солнцу, и что все планеты движутся медленнее, чем кометы, удаленные от Солнца значительно больше.

Что касается размеров частиц второго элемента, то можно думать, что наиболее высоко расположенные из них несколько меньше, чем самые низкие. Однако не следует полагать, что различие в их величине больше, чем различие в скорости. Напротив, надо думать, что от круга К до Солнца те частицы, которые расположены ниже всех, являются вместе с том и наименьшими и что различие в их величине или больше разности их скоростей, или по крайней мере равно ей. В противном случае частицы, находящиеся ниже, обладая наибольшей силой, благодаря своему движению заняли бы место наиболее высоких.

Наконец, заметьте, что в соответствии с описанным мною способом образования Солнца и неподвижных звезд их тела могут быть столь малыми в сравнении с небесами, в которых они находятся, что даже круги КК, LL и им подобные, указывающие, в какой степени их движение ускорило движение материи второго элемента, в сравнении с этими небесами будут не больше, чем точки, обозначающие их центр. Подобно этому, новые астрономы считают всю сферу Сатурна в сравнении с небосводом только точкой.

211

ГЛАВА IX

О ПРОИСХОЖДЕНИИ И О ПУТИ ПЛАНЕТ И КОМЕТ ВООБЩЕ И О КОМЕТАХ В ЧАСТНОСТИ

Чтобы перейти к вопросу о планетах и кометах, я прошу вас обратить внимание на предположенное мною разнообразие частиц материи. Несмотря на то что большая часть этих частиц, раскалываясь и разделяясь при столкновении друг с другом, приняла форму первого или второго элемента, в материи могут быть найдены еще два вида частиц, которые должны были сохранить форму третьего элемента. Именно таковы частицы, которые были столь велики и имели столь неудобные фигуры, что при столкновении друг с другом им было гораздо легче соединиться по нескольку вместе и благодаря этому стать более крупными, чем расколоться и уменьшиться. Те же частицы, которые с самого начала были наиболее крупными и плотными и при столкновении могли легко разбивать и ломать все прочие, сами уже не могли быть разбиты и разломаны.

Что бы вы ни предположили - что эти два вида частиц сначала двигались очень быстро, или очень медленно, или не двигались вовсе, совершенно ясно, что через определенное время они должны начать двигаться с той же быстротой, что и материя неба, в которой они находятся. Ведь если бы они сначала двигались быстрее этой материи, то, встречая ее на своем пути и сталкиваясь с нею, они должны были бы в короткое время сообщить ей часть своего движения. Если же, наоборот, они не имели сами по себе никакого стремления к движению, то и в этом случае, будучи окружены со всех сторон этой материей неба, они с необходимостью должны были бы следовать ее путем. Подобно этому, мы видим каждый день, что суда и другие плывущие по воде тела, как самые большие и самые массивные, так и меньшие, следуют течению воды, в которой они находятся, если им при этом ничто не мешает.

Обратите внимание, что из всех плывущих по воде тел наиболее тяжелые и массивные (какими обыкновенно бывают самые большие и очень нагруженные суда) всегда обладают значительно большей по сравнению с водой способностью продолжать свое движение, хотя бы оно и было получено только от одной воды. Напротив, очень легкие тела, например белая пена, скопившаяся и плавающая на поверхности рек во время бури, обладают такой способностью в значительно меньшей степени. Представьте себе две реки, соединенные в каком-либо месте и снова разде-

212

ляющиеся немного дальше, прежде чем успеют смешаться их воды, которые нужно предположить весьма спокойными и текущими с одинаковой силой, но вместе с тем и очень быстрыми. В этом случае суда и другие массивные и тяжелые тела, уносимые течением одной реки, могут легко перейти из этой реки в другую, в то время как самые легкие, наоборот, будут от нее удаляться и отбрасываться силой течения этой воды к тем местам, где оно не столь быстрое.

Пусть, например, двумя такими реками (рис. 3) будут ABF и CDG, которые текут с двух сторон, встречаются в Е и затем расходятся: АВ - в направлении F, CD - в направлении G. Ясно, что судно Н, следуя по течению реки

Рис. 3

АВ, должно пройти через Е в направлении G. а судно / должно пройти в направлении F, если только они не встретятся в проходе в одно и то же время; в этом случае большее и несущееся с большей силой судно разобьет другое. Напротив, пена, листья деревьев, перья, соломинки и прочие столь же легкие тела, которые могут плыть в направлении А, должны быть отнесены течением воды не в направлении Е и G, а в направлении В, где, надо думать, течение воды не такое быстрое, как в направлении /o', потому что здесь она течет по линии, менее близкой к прямой. Кроме того, надо еще обратить внимание на то, что не только такие легкие тела, но и другие, более тяжелые и массивные, сталкиваясь, могут соединяться друг с другом. Вращаясь вместе с уносящей их водой, они, соединяясь в большом количестве, могут образовывать большие комья, как К и /,. \\л этих комьев одни, как L, движутся к Еу а другие, как К,

213

движутся к B. и зависимости от того, насколько каждый из них плотен и насколько крупны и массивны частицы, из которых они состоят. Пользуясь этим примером, легко понять, что самые большие и самые массивные частицы материи, которые не могли принять ни формы второго, ни формы первого элемента, независимо от места их первоначального нахождения должны были через некоторое время направиться к внешней поверхности вмещающего их неба, а затем постоянно переходить из одного неба в другое, никогда не задерживаясь надолго ни на одном из них. Наоборот, все менее массивные из этих частиц должны быть отнесены движением материи неба к центру этого неба. В зависимости от описанных мною фигур частицы, сталкиваясь друг с другом, должны соединиться и образовать большие комья, вращающиеся в небесах со скоростью средней в

сравнении с теми скоростями, которые могли бы иметь их частицы по отдельности. Таким образом, одни частицы материи должны направиться к внешней поверхности неба,

а другие - к его центру.

Те частицы материи, которые расположены около центра какого-нибудь неба, мы должны здесь принять за планеты, а те, которые проходят через различные небеса, мы должны считать кометами.

Что касается этих комет, то следует прежде всего заметить, что в сравнении с числом небес в этом новом мире их должно быть немного. Если бы даже сначала их имелось много, то с течением времени они должны были бы сталкиваться, переходя из одного неба в другое, и почти все разбиваться от столкновения друг с другом, подобно тому как это происходит с двумя сталкивающимися судами, о чем мы говорили. В силу этого к настоящему времени из них могли бы остаться лишь наиболее крупные.

Следует также заметить, что, когда кометы таким образом переходят из одного неба в другое, они всегда толкают перед собой немного материи того неба, которое они покидают, и остаются некоторое время окутанными ею, до тех пор, пока не продвинутся достаточно далеко в пределы другого неба. Будучи уже здесь, они внезапно освобождаются от этой материи; на это им, быть может, требуется не больше времени, чем Солнцу на то, чтобы подняться утром над нашим горизонтом. Следовательно, они движутся значительно медленнее, когда стремятся таким образом выйти из какого-нибудь неба, нежели вскоре после того, как они туда вступили.

214

Как вы здесь (рис. 2) видите, комета, которая следует своим путем по линии CDQR, продвинувшись достаточно далеко в пределы неба FG и находясь уже в точке С, остается еще окутанной материей неба . из которого она вышла, и не может полностью освободиться от нее прежде, чем достигнет пункта D. Но как только она его достигает, она начинает следовать движению неба FG и, таким образом, двигаться значительно быстрее, чем двигалась до этого. Затем, продолжая свой путь в направлении Л, она должна постепенно замедлять свое движение по мере приближения к точке Q. Это объясняется как противодействием неба FGH, в пределы которого она начинает входить, так и тем обстоятельством, что и расстояние между S и D меньше, чем расстояние между S и Q, и вся материя неба, находящаяся между S и D, должна из-за меньшего расстояния двигаться здесь гораздо быстрее. Точно так же мы видим, что и реки всегда текут гораздо быстрее там, где их русло теснее и уже, чем там, где оно шире и просторнее.

Кроме того, следует подчеркнуть, что такая комета должна быть видна тем, кто находится вблизи центра неба FG, только в то время, когда она проходит расстояние от I) до Q. Вы поймете это лучше, когда я вам объясню, что представляет собой свет. Тогда вы узнаете также, что движение кометы должно казаться наблюдающим ее гораздо более быстрым, тело ее - более крупным, а свет - значительно более ярким в начале того периода, когда она видна, чем к концу его.

Если, кроме того, вы рассмотрите внимательно, каким образом свет, идущий от кометы, должен распространяться и рассеиваться во все стороны неба, то вы можете также легко понять, что, поскольку она, согласно нашему предположению, очень больших размеров, вокруг нее могут быть лучи, иногда расходящиеся во все стороны наподобие волос на голове, а иногда сходящиеся г одной стороны в виде хвоста в зависимости от того, где находится наблюдатель. У этой кометы, таким образом, имеются все особенности, замеченные до настоящего времени у комет в действительном мире (по крайней мере у тех, которые должны быть признаны подлинными). Мы совершенно не обязаны верить тем историкам, которые, описывая знамение, угрожавшее турецкому полумесяцу, рассказывают нам, что в 1450 г. Луна была задета кометой, проходившей по ней, и т. п. Нет основания доверять астрономам, если они неправильно вычислили величину неизвестной им рефракции неба и скорость движения комет (которая тоже недосто-

215

верна), приписывая им такой параллакс, что их можно поместить возле планет и даже ниже, как этого хотят некоторые.

ГЛАВА X

О ПЛАНЕТАХ ВООБЩЕ И О ЗЕМЛЕ И ЛУНЕ В ЧАСТНОСТИ

Теперь необходимо прежде всего сделать несколько замечаний о планетах. Во-первых, хотя все планеты и стремятся к центрам заключающих их небес, это не значит, что они когда-нибудь достигнут этих центров, потому что, как я уже сказал раньше, Солнце и другие неподвижные звезды занимают эти центры. Но для того чтобы уяснить, в каких местах они должны остановиться, рассмотрите, например

(рис. 2), планету, обозначенную, которая, по моему предположению, следует пути материи неба, находящейся у круга К. Если бы эта планета имела хоть немного больше силы, чтобы продолжать свое движение по прямой линии, чем частицы второго элемента, окружающие ее, то, вместо того чтобы все время двигаться по кругу К, она направилась бы к У и, таким образом, удалилась бы от центра S еще больше. Но так как частицы второго элемента, которые окружали бы ее около У, несколько меньше (по крайней мере не больше), чем находящиеся у К, и движутся быстрее последних, то они придали бы ей еще больше силы, чтобы продвинуться дальше к /'. Таким образом, планета дошла бы до наружной поверхности этого неба, не имея возможности остановиться ни в одном промежуточном месте; отсюда она легко перешла бы на другое небо и, таким образом, превратилась бы из планеты в комету.

Отсюда вы видите, что во всем этом обширном пространстве, простирающемся от круга К до границы неба FGGF, через которое совершают свой путь кометы, не может остановиться ни одна звезда. Кроме того, отсюда с необходимостью вытекает, что способность продолжать движение по прямой линии у планет не больше, чем у частиц второго элемента, находящихся у К, когда они движутся в одном потоке с ними. И все тела, обладающие этой способностью в большей степени, чем окружающие их частицы, становятся кометами.

Предположим теперь, что эта планета обладает меньшей силой, чем окружающие ее частицы второго элемента. Тогда те частицы, которые следуют за ней и находятс

216

несколько ниже, чем она, смогут отклонить ее от движения по кругу К и заставить опуститься до планеты, обозначенной A . Здесь может оказаться, что сила ее равна силе частиц второго элемента, которые ее в то время будут окружать. Основания этого заключаются в том, что частицы второго элемента, имея здесь большую скорость, чем у К, увеличат скорость движения планеты, а так как их величина здесь меньше, то они не будут в состоянии оказать ей такое сопротивление. В этом случае планета окажется среди них в равновесии и изберет себе такой же путь вокруг Солнца, как и они, совершенно не удаляясь от него, ибо и частицы второго элемента не могут от него удалиться.

Но если эта планета, находясь у A . для продолжения своего движения по прямой линии будет иметь меньше силы, чем материя неба, которую она там найдет, то планета переместится еще ниже, к планете, обозначенной C , Так будет продолжаться до тех пор, пока она наконец не окажется окруженной материей, у которой будет столько же силы, как и у нее.

Таким образом, вы видите, что здесь могут быть различные планеты, одни более, другие менее удаленные от Солнца, вроде обозначенных здесь из которых те, что расположены ниже всех, и самые малые могут доходить до поверхности Солнца. Те же, что расположены наиболее высоко, никогда не выходят за пределы круга К, который, будучи значительно больше, чем каждая планета в отдельности, тем не менее исключительно мал в сравнении со всем небом FGGF и, таким образом, как я уже сказал раньше, может рассматриваться как его центр.

Я до сих пор не объяснил вам причины того, что частицы неба, находящиеся вне круга К, будучи неизмеримо малыми в сравнении с планетами, имеют все-таки больше силы, чем планеты, для продолжения своего движения по прямой линии. Чтобы понять причину этого, обратите внимание на то, что эта сила зависит не только от количества материи, имеющейся в каждом теле, но также и от размеров поверхности. Когда два тела движутся одинаково быстро, можно с полным основанием сказать, что если одно из них содержит материи в два раза больше, чем другое, то и

217

движение его вдвое больше. Но на этом основании нельзя сказать, что одно тело будет обладать и вдвое большей силой для продолжения своего движения по прямой линии. Оно действительно будет иметь ее вдвое больше, но лишь в том случае, если его поверхность будет также в два раза больше, потому что оно встретит всегда в два раза больше других тел, которые окажут ему сопротивление. Сила этого тела будет значительно меньше, если его поверхность окажется значительно больше, чем в два раза, превышающей поверхность другого тела.

Вы знаете уже, что частицы неба почти совершенно круглы и, таким образом, имеют фигуру, заключающую наибольшее количество материи при наименьшей поверхности. Напротив, планеты, состоящие из частиц, имеющих очень неправильные фигуры с большой площадью, обладают значительно большей поверхностью в соотнесении с количеством их материи. Таким образом, поверхность планет значительно больше, чем поверхность большей части этих частиц неба. Однако она все же относительно меньше, чем поверхность некоторых из самых малых частиц, находящихся ближе к центру. Ибо из двух совершенно плотных шаров, каким подобны эти частицы неба, самый малый всегда имеет большую поверхность в соотнесении с количеством своей материи, чем самый большой.

Все это легко подтверждается с помощью такого опыта: будем толкать большой шар, образованный ветвями дерева, беспорядочно перепутавшимися и сплетшимися друг с другом, подобно тому как, по нашему предположению, соединились частицы материи, образовавшие планеты. Ясно, что, даже получив толчок от силы, в точности пропорциональной его величине, он не будет в состоянии продолжать свое движение так долго, как другой шар, значительно меньших размеров, сделанный из того же дерева, но совершенно плотный. Верно также и обратное, что из того же самого дерева можно сделать и совершенно плотный шар, который был бы настолько мал, что обладал бы значительно меньшей силой для продолжения своего движения, чем первый. Наконец, совершенно ясно, что наш первый шар может обладать большей или меньшей силой для продолжения своего движения в соответствии с тем, насколько толсты ветви, из которых он образован, и насколько они спрессованы.

Отсюда вы видите, почему различные планеты могут висеть на различных расстояниях от Солнца внутри круга К, почему также наиболее отдаленными из планет будут

218

не просто те, которые внешне кажутся самыми большими, но те, которые по своему внутреннему строению наиболее плотны и массивны.

К этому необходимо добавить следующее. Мы знаем из опыта, что суда, плывущие по реке, никогда не движутся так быстро, как несущая их вода, и самые большие из них не плывут так быстро, как самые малые. Точно так же, хотя планеты и следуют, не сопротивляясь течению материи неба, по одному руслу с нею, это не значит еще, что они всегда движутся столь же быстро, как эта материя. Неравенство их движений должно иметь некоторую связь с неравенством между величиной массы планеты и незначительностью размеров окружающих ее частиц неба. Причины этого заключаются в том, что, вообще говоря, чем больше тело, тем легче оно может сообщить часть своего движения другим телам и тем труднее другим телам передать ему что-либо из своего движения. Хотя несколько малых тел, согласованно действуя на большее тело, могут располагать такой же силой, как и оно, однако они никогда не смогут заставить его двигаться во всех направлениях так же быстро, как движутся они сами; ведь если они и согласованы между собой в некоторых своих движениях, передаваемых большому телу, они в то же время неизбежно различаются в отношении других движений, которые не могут быть сообщены ими этому телу.

Отсюда следуют два вывода, которые кажутся мне весьма существенными. Первый заключается в том, что материя неба должна вращать планеты не только вокруг Солнца, но и вокруг их собственного центра (за исключением тех случаев, когда какая-нибудь особая причина этому мешает) и, следовательно, образовать вокруг планет малые небеса, вращающиеся в том же направлении, что и большое небо. Второй вывод тот, что если встретятся две планеты, неравные по величине, но склонные двигаться по небу на одинаковом расстоянии от Солнца (так что одна из них будет во столько же раз плотнее другой, во сколько раз другая больше ее), то меньшая, обладая более быстрым движением, чем большая, должна будет присоединиться к тому малому небу, которое образуется вокруг этой большей, и постоянно вращаться вместе с этим небом.

Действительно, если частицы неба (рис. 4), находящиеся, например, вблизи Ал движутся быстрее, чем планета, обозначенная 71 которую они толкают к Z, то очевидно, что они должны быть отклонены ею и будут вынуждены двигаться к В. Я говорю: к В, а не к D, потому что,

219

Рис. 4

стремясь продолжать свое движение по прямой линии, частицы должны будут направляться скорее за пределы круга ACZN, описываемого ими, чем к центру S. Проходя, таким образом, от А к В, они заставляют планету Т вращаться вместе с ними вокруг своего центра. В свою очередь эта планета, вращаясь таким образом, дает им возможность взять направление от В к С, затем к D и, наконец, к Л и, следовательно, образовать вокруг себя особое небо. С этим небом она должна будет затем продолжать свое движение со стороны, называемой западом, в сторону, называемую востоком, вращаясь не только вокруг Солнца, но также и вокруг своего собственного центра.

Кроме того, зная, что планета, обозначенная C , склонна взять направление по кругу NACZ - точно так же как и планета, обозначенная Г,- и что она должна вращаться быстрее последней, потому что она меньше, легко будет понять, что через некоторое время она должна направиться к внешней поверхности малого неба ABCD, в каком бы месте неба она ни находилась вначале. Ясно также, что, однажды присоединившись к нему, планета эта должна будет следовать его путем вокруг Т вместе с частицами второго элемента, находящимися вблизи поверхности малого неба.

Мы предполагаем у нашей планеты такую же силу вращения по кругу NACZ, как и у материи этого неба, если бы

220

там не было другой планеты. Следует считать, что у нее несколько больше силы для вращения по кругу ABCD, потому что последний значительно меньше. Следовательно, она всегда удаляется на максимально возможное расстояние от центра A подобно тому как камень, выпущенный из пращи, всегда стремится удалиться от центра описываемого им круга. Однако эта планета, находясь около А, не будет отклоняться к L до тех пор, пока не войдет в ту область неба, материя которой имеет достаточно силы столкнуть ее с круга NACZ. И точно так же, находясь у С, она не опустится к K, потому что там она оказалась бы окруженной материей, которая дала бы ей силу подняться к тому же самому кругу NACZ. Она не пойдет также от В к Z и тем более от D к N, потому что она не могла бы там двигаться так легко и быстро, как в направлении С и А. Следовательно, она должна оставаться как бы привязанной к поверхности малого неба ABCD и постоянно вращаться с нею вокруг Т. Это препятствует образованию вокруг нее другого малого неба, которое в свою очередь заставило бы ее вращаться вокруг своего центра.

Я не говорю здесь, как может встретиться большое число планет, соединенных и движущихся вокруг одyой ив них, подобно, например, тем, которые новые астрономы наблюдали вокруг Юпитера и Сатурна. Я не имел в виду рассказывать обо всех, а о последних двух говорил только для того, чтобы представить всем Землю, на которой мы живем, в виде той планеты, которая обозначена Г, и Луну, вращающуюся вокруг нее, в виде планеты, обозначенной С .

ГЛАВА XI О ТЯЖЕСТИ

Теперь я хочу, чтобы вы рассмотрели, что представляет собой тяжесть этой Земли, т. е. сила, которая соединяет все ее частицы и заставляет их стремиться к ее центру в большей или меньшей степени, в зависимости от их величины и плотности. Сила эта состоит только в том, что частицы малого неба, окружающего Землю, вращаясь гораздо быстрее вокруг ее центра, чем частицы Земли, с большей же силой стремятся от нее удалиться и вследствие этого отталкивают туда последние. Возможно, вы найдете некоторое затруднение в том, что я сказал выше - что самые массивные и самые плотные тела, каковы, по моему предположе-

221

кометы, направятся к внешним поверхностям небес и что только менее массивные и плотные тела будут отталкиваться к центрам небес, - из этого, казалось бы, должно следовать, что только менее плотные частицы Земли могли отталкиваться к ее центру, а другие же должны от него удаляться, но заметьте: когда я сказал, что наиболее плотные и массивные тела стремятся удалиться от центра некоторого неба, то я предположил, что они прежде уже двигались вместе с материей этого неба. Ясно, что если они еще не качали двигаться или если они движутся с меньшей скоростью, чем это необходимо для того, чтобы они следовали за этой материей, то они должны быть сначала оттеснены этой материей к центру, вокруг которого она вращается. Ясно также, что с увеличением плотности они будут отталкиваться ею с большей силой и скоростью. Это, однако, не помешает образованию комет, если частицы, ее образующие, достаточно плотны, так как впоследствии они смогут продвинуться к внешней поверхности небес. Скорость, которую они приобретут, опускаясь к какому-либо из центров, непременно придаст им достаточную силу, чтобы пойти вверх и снова подняться к поверхности неба.

Для того чтобы вы это яснее поняли, обратите внимание (рис. 5) на Землю EFGH с водой 1, 2, 3, 4 и воздухом 5, б, 7,

В, которые, как я скажу после, составлены из некоторых менее плотных частиц Земли и образуют с нею одну массу. Затем рассмотрите также материю неба, наполняющую не только все пространство между кругами ABCD и 5, б, 7, 8,

222

но и все малые промежутки, имеющиеся внизу между частицами воздуха, воды и Земли. Представьте теперь, что это небо и эта Земля вращаются вместе вокруг центра Т и что, следовательно, все их частицы стремятся удалиться от этого центра. Частицы неба должны гораздо сильнее стремиться удалиться от центра, чем частицы Земли, поскольку у них больше скорость. Точно так же частицы Земли, с наибольшей скоростью движущиеся в ту же сторону, что и частицы неба, сильнее других стремятся удалиться от этого центра. Следовательно, если бы все пространство, находящееся за пределами круга ABCD, было пустым, т. е. если бы оно было наполнено только такой материей, которая не могла бы ни противостоять воздействию других тел, ни оказывать на них значительное влияние (ибо только так и следует понимать слово "пустота"), то все частицы неба, находящиеся в пределах круга ABCD, первыми вышли бы из него, за ними последовали бы частицы воздуха, затем воды и, наконец, частицы Земли, причем каждая с тем большей скоростью, чем меньше она оказывается связанной с остальной массой. Подобно этому, камень вылетает из пращи, как только опускается веревка, а пыль, посыпанная на вращающийся волчок, сразу же разлетается от него во все стороны.

Затем обратите внимание на то, что за пределами круга ABCD нет никакого пустого пространства, в которое могли бы проникнуть частицы неба, находящиеся внутри этого круга, и притом продвинуться так, чтобы их место не заняли тотчас же другие, совершенно подобные им. Точно так же и частицы Земли не в состоянии удалиться от центра Т на большее расстояние, чем они от него удалены, если на их место тотчас же не опустятся частицы неба или другие частицы Земли в том количестве, какое необходимо, чтобы заполнить это место. Они не могут также приблизиться к этому центру, если на их место не поднимется сразу столько же других частиц. Следовательно, все частицы противостоят друг другу; каждая из них связана с теми частицами, которые должны занять ее место в случае, если она поднимется, и точно так же с теми, которые займут ее место в случае, если она опустится, подобно двум чашам весов, уравновешивающим друг друга. Иными словами, пи одна из частиц, находящихся в равновесии, не может ни подняться, ни опуститься, если другая не сделает в тот же момент противоположного движения; всегда перевес на одной стороне сопровождается перевесом на другой. Например, камень R противостоит тому количеству воздуха (в точно-

223

сти равному ему по объему), которое находится над ним. Место этого воздуха он должен будет занять в случае, если он больше удалится от центра 7\ а воздух этот должен обязательно опускаться по мере того, как камень поднимается. Точно так же последний в такой же мере противостоит другому подобному же количеству воздуха, находящемуся под ним. Место этого воздуха он должен будет занять в том случае, если приблизится к центру; когда этот воздух поднимется, камень должен опуститься.

Ясно, что этот камень содержит в себе значительно больше материи Земли и соответственно меньше материи неба, чем воздух равного с ним объема, и что его земные частицы гораздо слабее приводятся в движение материей неба, нежели частицы этого воздуха. Поэтому камень не обладает силой, которая поднимала бы его выше этого воздуха. Напротив, он должен иметь силу, заставляющую его опускаться вниз. Таким образом, по сравнению с камнем воздух оказывается легким, а по сравнению с совершенно чистой материей неба - твердым. Следовательно, вы видите, что каждая частица земных тел придавливается к Т окружающей ее материей, но не безразлично всей, а только определенным количеством последней, совершенно равным величине частицы. Находясь же внизу, эта материя может занять ее место в случае, если она опускается. Это и служит причиной того, почему из частиц одного и того же тела, называемого однородным, например из частиц воздуха или воды, наиболее низкие не придавлены значительно сильнее, чем наиболее высокие, и что человек, находясь очень глубоко под водой, не чувствует на своей спине большего давления воды, чем при плавании наверху.

Но может показаться, что материя неба, заставляя подобным образом камень R опускаться к Т ниже окружающего ее воздуха, должна также заставлять его двигаться к 6 или к 7, т. е. к западу или к востоку, быстрее воздуха и, следовательно, он опускается не прямо по отвесу, как это происходит при падении тяжелых тел на настоящей Земле, а наискось. Однако необходимо принять во внимание, что все частицы Земли, заключенные в круге 5, 6, 7, 8, будучи придавлены материей неба к Т так, как я только что объяснил, и обладая весьма неправильными и разнообразными формами, должны соединиться, сцепиться друг с другом и, таким образом, составить единую массу, которая вся, целиком будет уноситься движением неба ABCD. Поэтому при вращении Земли ее частицы, находящиеся, например, у 6, все время остаются против тех, которые находятся у 2 и у F,

224

не отклоняясь значительно ни в ту, ни в другую сторону, если они не побуждаются к этому ветром или другими причинами.

И заметьте, кроме того, что это малое небо ABCD вращается намного быстрее, чем Земля. Однако те из частиц неба, которые находятся в порах земных тел, не могут вращать их вокруг центра Т значительно быстрее этих последних, хотя они и движутся значительно быстрее их в различных других направлениях в соответствии с расположением этих пор.

Затем обратите внимание на то, что, хотя небесная материя заставляет камень R приближаться к этому центру, так как она с большей силой, чем он, стремится удалиться от центра Г, она все же не должна заставлять его двигаться к западу, потому что камень также стремится с большей силой, чем материя, направиться к востоку. Материя неба стремится удалиться от центра Т, потому что она склонна продолжать свое движение по прямой линии; с запада на восток она движется только потому, что стремится продолжать свое движение с той же скоростью и ей при этом безразлично, находится ли она у 6 или у 7.

Очевидно, что путь материи неба несколько ближе к прямой линии, когда она заставляет камень R опускаться к T, и что путь ее был бы более искривлен, если бы камень оставался у R. Кроме того, она не могла бы так быстро двигаться на восток, если бы заставляла его двигаться на запад, или оставляла его на своем месте, или даже толкала его перед собой.

Однако вы должны знать, что, хотя материя неба имеет больше силы для того, чтобы заставить камень R опуститься к T нежели для того, чтобы заставить опуститься туда же окружающий его воздух, она не должна иметь большей силы, чтобы толкать его перед собой с запада на восток. Следовательно, она не должна заставлять его двигаться в этом направлении быстрее воздуха. Учтите, что этой материи неба, действующей на камень так, чтобы заставить его опуститься к T и употребляющей на это всю свою силу, имеется как раз столько, сколько в состав камня входит материи Земли. Так как материи Земли в камне значительно больше, чем в воздухе равного с ним объема, то камень должен быть придавлен к Т значительно сильнее, чем этот воздух. Для того же чтобы повернуть камень на восток, на него действует вся материя неба, содержащаяся в круге R, со всеми частицами воздуха, содержащимися в том же круге. Таким образом, поскольку на него дей-

8 Р. Декарт, т. 1

225

ствует не больше сил, чем на воздух, камень не должен и вращаться в этом направлении быстрее воздуха.

Отсюда вы можете понять, что доводы, которыми пользуются некоторые философы, чтобы опровергнуть движение действительной Земли, теряют свою силу в отношении Земли, описываемой мною. Они говорят, например, что если Земля движется, то тяжелые тела должны были бы не падать к ее центру по отвесу, а скорее отклоняться в ту или другую сторону по направлению к небу; что пушки, повернутые на запад, стреляли бы значительно дальше, чем пушки, повернутые на восток; что в воздухе постоянно чувствовался бы сильный ветер и был бы слышен сильный шум и т. п. Однако все это могло бы иметь место только в том случае, если предположить, что Земля не уносится движением окружающего ее неба, а движется благодаря некоторой другой силе и в направлении, отличном от направления движения неба.

ГЛАВА XII О МОРСКИХ ПРИЛИВАХ И ОТЛИВАХ

После того как я объяснил таким образом тяжесть частиц Земли, вызванную действием материи неба, находящейся в ее порах, необходимо поговорить о том движении всей массы Земли, причиной которого служит Луна, и о некоторых зависящих от этого обстоятельствах.

Для этой цели рассмотрите Луну, которая находится, например, вблизи В (рис. 5). Вы можете предположить, что она как будто неподвижна в сравнении со скоростью движения находящейся под ней материи неба. Обратите внимание, что для прохождения материи между О и 6 имеется меньше пространства, чем было бы между В и 6 (если бы Луна не занимала пространства между о и В). Следовательно, она принуждена двигаться здесь немного быстрее и нуждается в силе для того, чтобы всю Землю немного оттолкнуть к Г), так что центр последней Т несколько удалится от точки M, являющейся центром малого неба ABCD потому что только течение материи этого неба удерживает Землю в том месте, где она находится. Но так как воздух 5, 6, 7, 8 и вода 1, 2, 3, 4, окружающие Землю, являются телами жидкими, то очевидно, что та самая сила, которая давит на Землю, должна также заставить их опуститься к Г, и притом не только со стороны 6, 2, но и с противоположной ей - 8,4. Эта сила должна также заставить их под-

226

няться в области 5, 1 и 7, 3. Следовательно, поверхность Земли в EFGH останется круглой, так как Земля тверда, поверхность же воды 1,2,3,4 и поверхность воздуха 5, 6, 7, 8, являющиеся жидкими, должны образовать овалы.

Затем учтите, что Земля вращается вокруг своего центра, благодаря чему образуются сутки, которые, подобно нашим, можно разделить на 24 часа. Обращенная в данный момент к Луне сторона Земли F, на которой по этой причине вода 2 не высока, должна оказаться через шесть часов против пункта неба, обозначенного С, где вода будет выше, а через 12 часов - против пункта неба, обозначенного Д где уровень воды снова понизится. Таким образом, море, представляемое водой 1, 2, 3, 4, должно иметь свои приливы и отливы вокруг Земли продолжительностью по шесть часов каждый, подобно тому как это имеет место на той Земле, где мы живем.

Заметьте также, что по мере вращения Земли от Е через F до G, т. е. с запада через юг к востоку, приливная волна воды и воздуха, находящаяся у 1 и 5 и у 3 и 7, перемещается с восточной стороны Земли к западной, вызывая прилив без отлива, совершенно подобный тому, который, но сообщениям наших мореплавателей, делает плавание с востока на запад более легким, чем с запада на восток.

Чтобы ничего не забыть, прибавим, что Луна каждый месяц совершает точно такой же оборот, какой Земля делает ежедневно. Из этого следует, что она должна понемногу продвигать к востоку пункты 1, 2, 3, 4, обозначающие наиболее высокие и наиболее низкие уровни воды. Следовательно, смена этих уровней происходит не в точности через каждые шесть часов, а запаздывает всякий раз приблизительно на одну пятую часа, совершенно подобно тому, как это бывает в наших морях.

Заметьте, кроме того, что малое небо ABCD не совсем круглое и несколько больше простирается к Л и к С, двигаясь здесь соответственно медленнее, чем у В и Д где оно не может так легко нарушать движения материи другого, заключающего его неба. Таким образом, Луна, остающаяся всегда как бы прикрепленной к внешней поверхности неба, должна двигаться несколько быстрее, менее отклоняться от своего пути и, таким образом, быть причиной того, что морской прилив и отлив значительно больше, когда Луна находится у В (в полнолуние) и у D (в новолуние), нежели тогда, когда она. находится у Л и у С, где видна только половина Луны. Это те же самые особенности, которые астрономы наблюдают на действительной Луне, хотя они, веро-

8*

227

ятно, не могут так легко объяснить их с помощью своих гипотез.

Другие действия Луны, различающиеся в новолуние и в полнолуние, явно зависят от ее света. Что же касается других особенностей прилива и отлива, то они отчасти связаны с различным положением берегов моря, а отчасти находятся в зависимости от ветров, господствующих во время наблюдения в данном месте. Наконец, что касается других общих движений, как Земли и Луны, так и иных звезд и небес, то либо вы поймете их из того, что я сказал, либо же они не имеют никакого отношения к предмету нашего исследования. Так как они не входят в тот план, которого я придерживался, обсуждение их было бы излишним. Мне остается только объяснить здесь то действие неба и звезд, которое, как я только что сказал, следует рассматривать как их свет.

ГЛАВА XIII О СВЕТЕ

Я уже несколько раз говорил о том, что вращающиеся по кругу тела всегда стремятся удалиться от центров описываемых ими кругов. Но здесь необходимо более точно определить, куда стремятся частицы материи, образующей небеса и звезды.

Для этого прежде всего нужно подчеркнуть, что когда я говорю о стремлении тела в какую-либо сторону, то я вовсе не желаю связывать это стремление с наличием у тела какой-нибудь мысли или направляющей его воли. Я хочу только сказать, что это тело склонно двигаться в известном направлении, независимо от того, действительно ли оно движется туда или встречает препятствие со стороны другого тела. Именно в этом смысле я преимущественно и пользуюсь словом "стремиться" (tendre), потому что оно, как мне кажется, означает известное усилие, а всякое усилие предполагает сопротивление. Часто случается, что на одно и то же тело одновременно действуют различные причины, препятствующие друг другу. В таких случаях, по-разному рассматривая это тело, можно сказать, что оно стремится одновременно в различные стороны. В этом смысле я только что сказал, что частицы Земли стремятся удалиться от центра, поскольку они рассматриваются совершенно изолированно; если принять во внимание силу частиц неба, толкающих их к центру, то они стре-

228

мятся сблизиться; наконец, они стремятся удалиться друг от друга, если считать, что они противопоставлены другим частицам Земли, образующим тела более плотные, чем они.

Так, например, камень, вращающийся в праще по кругу АВ (рис. 1), находясь в точке Л, стремится к С, если принимать во внимание лишь само его движение; в круговом движении он стремится от А к В, если учитывать, что его движение регулируется и определяется длиной удерживающей его веревки; наконец, тот же самый камень стремится к Е, если, не принимая во внимание ту часть его движения, которая не встречает противодействия, противопоставить другую часть сопротивлению, которое постоянно оказывает ему праща.

Чтобы ясно понять последний пункт, представьте себе, что стремление к движению от А к С, которым обладает этот камень, состоит как бы из двух других: одного, вращающего его по кругу ЛИ, и другого, влекущего его совершенно прямо по линии FAY, так что, находясь в точке пращи V, когда праща находится в точке круга А, он должен был бы затем находиться в точке X, когда праща была бы в точке В, и в точке У, когда она была бы в точке F, и, таким образом, он должен был бы всегда находиться на прямой ACG. Затем, имея в виду, что в одной части своего стремления (inclination), а именно в той, которая направляет его по кругу АВ, он не задерживается этой пращей, вы увидите, что противодействие камень встретит только в другой части своего стремления, а именно в той, которая заставила бы его двигаться по линии DVXY, если бы нигде не встречала противодействия. Следовательно, камень стремится, т. е. прилагает усилие, только к тому, чтобы удалиться по прямой от центра ?>, и заметьте, что камень поэтому, находясь в точке А, так стремится к Е, что у него нет никакой склонности двигаться ни к Я, ни к /, хотя легко можно было бы принять обратное, если не учитывать различия, существующего между тем движением, которое уже есть у камня, и оставшимся у него стремлением к другому движению.

То, что сказано относительно этого камня, необходимо предположить и относительно каждой из частиц второго элемента, образующего небеса. Это значит, что частицы, находящиеся, например, у Е (рис. 6), по своей собственной склонности стремятся только к Р, но противодействие других частиц* неба, находящихся над ними, мешает им направляться туда и вынуждает их двигаться по кругу ER. Это же противодействие стремлению частиц продолжать

229

Рис. 6

свое движение по прямой линии заставляет их направляться к М, т. е. является причиной того, что они стремятся двигаться туда. Рассматривая точно так же все другие частицы, вы увидите, в каком смысле можно сказать, что они стремятся в сторону, прямо противоположную центру неба, образованного этими частицами.

Но по сравнению с камнем, вращающимся в праще, в отношении частиц второго элемента следует еще обратить внимание на то, что эти частицы постоянно толкаются как подобными им частицами, находящимися между ними и звездой, занимающей центр их неба, так и материей этой звезды. Но их не толкают другие, иначе расположенные частицы; например, частицы, находящиеся у Е, совершенно не толкаются частицами, находящимися у N, или Ту или Я, или К, или Я, а толкаются только всеми теми, которые расположены между линиями AN и DG, и материей Солнца. Это и является причиной того, что они стре-

230

мятся не только к М, но и к L, и к N, и вообще ко всем точкам, куда могут дойти лучи, или прямые линии, которые, исходя из какой-нибудь части Солнца, проходят через точки местонахождения этих частиц.

Чтобы облегчить объяснение всего этого, я хочу обратить ваше внимание на одни только частицы второго элемента, как будто все пространства, занятые материей первого элемента (т. е. и то, где находится Солнце, и все остальные), совершенно пусты. Для того чтобы узнать, оказывают ли воздействие на тело некоторые другие тела, нет лучшего средства, как посмотреть, продвинутся ли последние к тому месту, где находится это первое тело, чтобы заполнить это место, если оно окажется пустым. Я хотел бы также, чтобы вы вообразили, будто все частицы второго элемента, находящиеся у Е, оттуда удалены. Предположив это, вы сразу же увидите, что ни одна из частиц, находящихся выше круга TER (например, у М), совершенно не склонна заполнить это место у Е, потому что все они, напротив, стремятся удалиться от него. Затем вы видите также, что частицы, находящиеся в этом круге, т. е. около Т, к этому точно так же не склонны. Хотя, следуя пути всего неба, они и движутся в действительности от Т к G, нельзя забывать, что и частицы, находящиеся у F, движутся с такой же скоростью к R. Поэтому пространство Е, которое тоже предполагается подвижным, подобно частицам, будет оставаться между G и F пустым, если только его не заполнят частицы, пришедшие из другого места. Наконец, частицы, находящиеся внутри этого круга, но не заключенные между линиями AF и DG, подобно, например, частицам, находящимся у Н или у К, также нисколько не стремятся продвинуться к этому пространству Е, чтобы заполнить его, хотя стремление удалиться от S, которым они в известной мере обладают, располагает их к этому, точно так же как тяжесть камня располагает его не только к тому, чтобы падать совершенно прямо в воздушном пространстве, но и к тому, чтобы катиться по склону горы в том случае, если он не может опуститься иначе.

Причина, препятствующая им продвинуться к этому пространству, заключается в том, что все движения продолжаются по возможности по прямым линиям и, следовательно, когда природа имеет много путей для достижения одного и того же результата, она всегда безошибочно выбирает самый короткий. Ибо если бы частицы второго элемента, находящиеся, например, у К, продвинулись к Е, то все те частицы, которые были ближе к Солнцу, в тот же

231

назад содержание далее



ПОИСК:




© FILOSOF.HISTORIC.RU 2001–2023
Все права на тексты книг принадлежат их авторам!

При копировании страниц проекта обязательно ставить ссылку:
'Электронная библиотека по философии - http://filosof.historic.ru'