Библиотека    Новые поступления    Словарь    Карта сайтов    Ссылки






назад содержание далее

Часть 10.

Как широко процесс обработки информации распространяется по коре в разные стороны? Поразительно, что он весьма локален. За пределами нескольких миллиметров уже сравнительно мало взаимосвязей, если не считать аксонных связей диффузного характера, идущих от ствола мозга. Каждый маленький участок содержит множество взаимосвязанных нейронов (каждый квадратный миллиметр поверхности коры включает около 100000 нейронов), но они почти не имеют каких-либо прямых связей с теми нейронами, которые реагируют на более далекие части поля зрения. (У макака общая поверхность стриарной коры в одном полушарии составляет приблизительно 1400 квадратных миллиметров.)

Следует отметить, что пока еще нет убедительных свидетельств о наличии внутри области дискретных модулей. Отношения здесь скорее такие, как между жителями воображаемого города, которым запрещено удаляться от дома более чем на полмили. Они могут общаться со своими соседями на расстоянии одной мили, особенно со своими ближайшими соседями, но не имеют никаких прямых контактов с теми, кто живет подальше.

Примечательно, что это описание, в его самом общем виде, применимо к большей части коры, если не ко всей. Известно множество отдельных зрительных полей, каждое с какой-либо «картой» поля зрения. В коре у ночной обезьяны по меньшей мере восемь, а может быть, и больше, преимущественно зрительных полей. Если мы взглянем на слуховые или на соматосенсорные области, то увидим то же самое. Слуховая кора этой обезьяны состоит из четырех отдельных полей, «картированных» по частоте и, вероятно, по амплитуде. Поверхность тела обезьяны картирована несколько раз в соматосенсорных областях. Во всех случаях входы, большая часть которых идет к средним слоям коры, состоят из чередующихся полос того или иного типа. Эти входы смешиваются при переработке информации, которая происходит в верхних и нижних слоях. После переработки выходная активность направляется упорядоченным образом к нескольким другим пунктам как в коре, так и в подкорковых областях. Вполне оправдана гипотеза, согласно которой в случае такой связи между двумя полями выход одного из них картируется упорядоченно, но необязательно однородно на поверхности второго поля. Кроме того, часто наблюдаются обратные отношения. У обезьяны поле 17 посылает картированную проекцию к полю 18, а это последнее тоже посылает часть своей выходной активности обратно к полю 17. Эти обратные связи, вероятно, не диффузны, а образуют обратную карту. Насколько точно прямая и обратная карты соответствуют друг другу, еще неизвестно. Можно думать, что соответствие окажется довольно точным.

Из того правила, что в корковых слоях не обнаружено отчетливых клубочков нейронов, имеется одно интересное исключение. Это бочонки, исследованные Т. Вулси (Т. Woolsey) с сотрудниками в Медицинской школе Вашингтонского университета и упомянутые в настоящем выпуске в статье У. Коуэна (см. «Развитие мозга»}. Каждый бочонок имеет в поперечнике приблизительно 200 ммк, и, хотя соседние бочонки соединены между собой, связи внутри бочонка гораздо богаче. Это служит иллюстрацией того, как кора справляется с мелкими, пространственно дискретными, а не непрерывными входами.

Возможно ли, что кора содержит фиксированное, определимое число отдельных полей? Это, очевидно, верно для сенсорных и, вероятно, для моторных полей. На приведенном мною рисунке изображена карта зрительной коры ночной обезьяны, составленная недавно Дж. Олменом (J. Allman) с сотрудниками из Калифорнийского технологического института. На ней показаны восемь отдельных полей, картированных в этой области. Как можно видеть, хотя каждое поле и имеет на карте достаточно очерченные границы и определяется в этих случаях вполне однозначно, в коре в этих точках отсутствуют отчетливые изолирующие границы. В обоих полушариях кора представляет собой непрерывный слой с одним только краем. В нем нет «щелей». Неудивительно поэтому, что на границах в картировании имеется, говоря приближенно, локальная плоскость зеркальной симметрии. Иными словами, две карты, по одной с каждой стороны границы, взаимосвязаны. При продвижении вдоль границы эти карты по обе стороны от нее одинаковы. При удалении от нее под прямым углом направление движения в поле зрения на одной карте такое же, как при удалении от границы на другой карте. Если внимательно рассматривать рисунок, то видно, что это правило нарушается только в одном месте. Правило локальной плоскости зеркальной симметрии сохраняет свою силу на картах как слуховой, так и соматосенсорной системы, опять-таки с несколькими исключениями. Этого как раз и следовало ожидать при наличии ряда отдельных карт, которые в то же время до известной степени взаимодействуют по краям. Это позволяет думать, что в процессе эволюции новые функциональные поля головного мозга возникают попарно.

Распространяется ли такое картирование в виде обособленных полей также на остальные части коры, в частности на лобные области, и на то, что мы называем ассоциативными зонами? В настоящее время никто этого не знает даже про обезьян, не говоря уже о человеке. Но уже теперь ясно, что у обезьян большую часть коры можно картировать таким образом. Хотя легко представить себе, как можно было бы разрушить представление о полях (понятие поля полезно только при условии, если несколько разных его определений однозначно приводят к одному и тому же делению на поля), я склоняюсь к тому, что это представление правильно почти для всей коры. А если оно правильно, то сколько же полей в коре человека? Больше 50? Может быть, меньше 100? Если бы каждое поле можно было посмертно четко окрасить так, чтобы точно увидеть, сколько всего полей, каких размеров каждое из них и как именно оно соединено с остальными полями, это явилось бы большим шагом вперед.

До сих пор я говорил только о коре большого мозга, но кора мозжечка очевидно с ней сходна. Здесь также входы упорядочены и образуют более одной карты. Оба главных входа, по-видимому, расположены в виде полос. Есть что-то в эмбриологии, чему «нравятся» полосы. Это очень ярко показала М. Константин-Патон (М. Constantine-Paton) из Принстонского университета, которая путем эмбриологических манипуляций создала лягушек с третьим глазом. В норме на каждый tectum opticum проецируется только один глаз, но в этом случае к нему могут идти проекции от обоих глаз. Когда это происходит, входы располагаются полосами, чего не бывает у нормальных лягушек.

Далее, если взять такие подкорковые области, как таламус, то здесь мы снова найдем некоторые свидетельства упорядоченного картирования. Каждое кортикальное поле обычно содержит карту своего собственного участка таламуса, часто в виде пятен. Упорядоченные карты, очевидно, имеются и в других частях нервной системы - базальных ганглиях, стволе мозга, спинном мозгу и т. д. В каждом таком случае нам нужно точно знать, как раздробить обширную совокупность нейронов на мельчайшие, имеющие определенное значение единицы, даже если эти единицы взаимодействуют до известной степени со своими соседями. Во многих случаях они представляют собой слои или части слоев, в других случаях имеют более компактную форму. Их входы и выходы не всегда расположены так аккуратно, как в коре, и поэтому задача не всегда будет легкой.

Снабженные весьма приблизительной картиной высших отделов головного мозга, мы теперь можем обратиться к общим вопросам о природе связей. Для этого нам нужны два довольно простых понятия: прецизионная схема связей и ассоциативные сети.

В то время как иногда кажется, что в головном мозгу все соединено со всем, в прецизионной схеме связи расположены определенным, упорядоченным образом. Лишь определенные клетки связаны с другими определенными клетками, а общая структура связей часто одинакова у отдельных животных. Прецизионное распределение связей обычно обнаруживается там, где в нем участвует небольшое число клеток, как, например, у сравнительно примитивного беспозвоночного аплизии, описанного в статье Кэндела (см. стр. 59). Хорошим примером служит также небольшой круглый червь Caenorhabditis elegans, которого изучал С. Бреннер (S. Brenner) с сотрудниками в Лаборатории молекулярной биологии Медицинского исследовательского совета в Кембридже в Англии. У этого вида сеть состоит точно из 279 нейронов, которые соединены между собой в точности одинаково у всех особей. Более многочисленные нейроны тоже могут быть связаны прецизионно, в особенности там, где структура из клеток повторяется многократно, что характерно, например, для глаза мухи. Прецизионное распределение связей не исключает возможности обучения, что ясно показано в статье Кэндела, потому что сила связей может быть изменена опытом.

В то же время, если рассматривать схему распределения связей (в той мере, в какой она нам известна) в области головного мозга у более сложного животного, скажем поля в зрительной коре обезьяны, то обнаружатся два обстоятельства. Клеток здесь гораздо больше, а распределение связей между ними, очевидно, гораздо менее прецизионное. В одном полушарии головного мозга у обезьяны оно, безусловно, не точно такое же, как в другом. Тем не менее связи, идущие от глаза к зрительной коре, распределены вовсе не случайно. Как пишут в своей работе Хьюбел и Визель, эти связи образуют, хотя и не точную, топографическую карту. Нейроны относятся здесь ко многим типам, которые связаны между собой не случайно, хотя точную степень упорядоченности этих связей установить трудно. Создается впечатление, что в пределах одного небольшого участка точные связи отчасти являются делом случая. Кроме того, один предъявляемый глазу простой сигнал - скажем, короткая линия в одном пункте поля зрения - возбудит не один-единственный детектор границы, а, возможно, несколько тысяч таких детекторов. Одним словом, структура связей не только рассчитана на извлечение из входных сигналов их признаков, но, по-видимому, обладает также некоторыми свойствами ассоциативной сети.

Ассоциативная сеть - это абстрактная схема соединений, изучаемая теоретиками - Марром (Marr), К. Лонге-Хиггинсом (Ch. Longuet-Higgins), Л. Купером (L. Cooper) и другими. Такая сеть имеет набор входных каналов (иногда несколько наборов) и набор выходных каналов. Каждый входной канал связан со всеми выходными, но сила связей неодинакова. Точное распределение зависит от типа рассматриваемой сети. Сила связи отрегулирована «на основании опыта» по определенным точным правилам, обычно так, что те проводящие пути, которые часто активируются совместно, каким-то образом усиливаются.

Такие сети служат для тонкой настройки системы с частично прецизионным распределением связей или способствуют вызову сложного выхода, когда приходит входная активность (или еще лучше - частичная входная активность) от чего-либо, с ним связанного. Взглянув на лицо человека, вы вспоминаете его имя (хотя, увы! не всегда). Вы в состоянии вспомнить человека, даже если увидели лишь часть его лица.

Высшая нервная система представляет собой чрезвычайно хитроумную комбинацию прецизионного распределения связей с ассоциативными сетями. Она построена не так, чтобы каждый входной канал был прямо связан со всеми остальными входными каналами. Кроме того, у высших животных она, по-видимому, не построена прецизионно. Для достижения своих целей система использует две стратегии. Одна из них - стратегия множественного и последовательного картирования (включая реципрокное картирование); она является компонентом, аппроксимирующим прецизионное распределение связей. Но, кроме того, система, по-видимому, организует связи таким образом, что локально - в пределах маленького участка - она, грубо говоря, соединяет все со всем.

Каждый участок содержит целое семейство локальных перекрывающихся ассоциативных сетей. Поэтому на ранней стадии переработки некоторые сигналы (скажем, одна группа от глаза и другая - от уха) не соотносятся друг с другом. Но по мере перехода сигналов от одной карты к другой первоначальное картирование становится и более диффузным, и более отвлеченным (например, ответ на ориентацию лучше, чем на пятно), и, таким образом, сигнал анализируется последовательно все более сложными способами в сочетании с сигналами от других входов.

При таком описании системы мы сразу видим, что это не просто одна огромная ассоциативная сеть. Построить такую сеть, в которой каждый нейрон реагирует непосредственно со всеми другими нейронами, было бы гораздо труднее и она заняла бы гораздо больше места. Поэтому сеть разделена на множество мелких подсетей; одни из них связаны параллельно, другие более последовательно. Кроме того, дробление на подсети отражает внешнюю и внутреннюю структуру окружающего мира, а также наши взаимоотношения с ним. Каждая локальная сеть приспособлена для выполнения тех специальных операций на своем входе, которые нужнее всего в этом пункте для извлечения значимой новой информации. При рассмотрении под таким углом зрения многие общие свойства головного мозга - многочисленные функциональные области, множественные связи с каждым нейроном - начинают приобретать некий смысл.

Разумеется, деятельность головного мозга еще гораздо шире, чем те процессы, которые я обрисовал выше. Должны существовать механизмы внимания, в особенности сосредоточенного внимания, усиливающие активность малых частей мозга. Должна существовать какая-то общая управляющая система. Чтобы мое чрезмерно упрощенное описание не ввело читателя в заблуждение, я советую ему обратиться к статье У. Науты и М. Фейртага (W. Nauta, M. Feirtag), где ясно показано, насколько сложно в действительности все устройство (см. «Организация мозга»). Тем не менее нарисованная мною схема покажет хотя бы кое-что из того, что можно надеяться увидеть при более детальном исследовании нервных процессов.

Какая система или какой уровень вероятнее всего окажется наиболее доступным экспериментальному изучению? Ответить на этот вопрос всегда трудно. Как указывает Кэндел, беспозвоночные животные с их крупными клетками, связанными между собой довольно точно, представляют много преимуществ, и можно не сомневаться, что некоторые созданные в процессе их исследования методики, полученные данные и проникновение в их смысл окажутся полезными также для понимания нервной системы высших и более сложных животных. Сомнительно, однако, чтобы на низших животных можно было получить ответы на все вопросы. Трудно также сказать, какое животное послужит наилучшей моделью человека и какой отдел мозга легче всего изучать. Зрительная система макака, очевидно, очень сходна с нашей. Зрительная система кошки меньше похожа на нее, но кошки обладают другими достоинствами для эксперимента. Много лет не утихает спор о том, какая система более пригодна для изучения - мозжечок или зрительная кора. (Поступающие в зрительную кору сигналы легче контролировать, но упорядоченность ее нейронного строения - ничто по сравнению с упорядоченностью структуры мозжечка.)

Как решить, например, что лучше - детально изучить одну или несколько областей коры, с тем чтобы точно объяснить наблюдаемые в них процессы с позиций нейроанатомии и нейрофизиологии, или же считать все кортикальные области маленькими черными ящиками и сосредоточиться на отношениях между ними? Вполне можно считать, что области, контролирующие более диффузные «активационные» системы, например систему проекций от locus coeruleus, более доступны изучению, чем системы, детально перерабатывающие информацию. На чем бы ни остановиться, за что ни взяться в первую очередь, очевидно, предстоит еще долгий путь, пока мы достигнем, хотя бы в общих чертах, такого понимания работы мозга, которое будет прочно опираться на эксперимент и на теорию.

Каковы в таком случае ближайшие перспективы для нашего понимания мозга? По мере накопления сведений можно ли надеяться на своего рода «прорыв»? Это всегда возможно, но перспективы здесь не очень обнадеживающие. Иногда забывают, что нейробиология уже совершила несколько таких прорывов. Одним из них было открытие, что нервный импульс распространяется по аксону в форме «спайков» приблизительно одинаковой амплитуды и с одинаковой скоростью. Другой прорыв произошел, когда стало ясно, что в большинстве синапсов происходит химическая передача и, в особенности, что синапсы бывают как возбудительные, так и тормозные. Оба этих открытия касаются феноменов, возникших на ранней стадии эволюции животных. Несколько отрезвляет то обстоятельство, что в молекулярной биологии основные прорывы тоже были связаны с механизмами, возникшими уже очень давно. Часто сложные природные явления основаны на простых процессах, но эволюция обычно украшала их всякими видоизменениями и добавлениями в стиле барокко. Разглядеть скрытую под ними простоту, которая в большинстве случаев появлялась достаточно рано, часто бывает чрезвычайно трудно.

Существует еще одна проблема. Анализируя, какие разделы молекулярной биологии развивались быстрее всего, мы видим, что это те части, которые относятся к одномерным приспособлениям (например, определение последовательности оснований в нуклеиновой кислоте или аминокислот в белке), или зависят от возможности отделить небольшую часть системы (например, фермент) и изучать ее сравнительно оторванно от всей остальной системы. Те проблемы, которые связаны с множеством одновременных взаимодействий (как, например, предсказание характера укладки полипептидной цепи), мало продвинулись вперед. Такой анализ предвещает мало хорошего проблемам изучения высших отделов нервной системы, относящимся преимущественно к этому последнему типу.

Но один прорыв, совершенный генетикой и начатый Менделем, явился результатом подхода с позиций представления о черном ящике (изучение наследования признаков у растений) и дал сведения о высоком уровне организации (о хромосоме). Поэтому если в исследовании головного мозга действительно произойдет прорыв, то, вероятно, это будет на уровне общего управления системой. Если бы система была такой хаотичной, какой она иногда кажется, мы не могли бы выполнять удовлетворительно даже самые простые задачи. Если взять возможный, хотя и маловероятный, пример, то мощным прорывом явилось бы открытие, что работа мозга производится фазически, каким-то периодическим часовым механизмом, подобно компьютеру.

В настоящем выпуске «Scientific American» показано, что головной мозг успешно изучается под многими углами зрения и что проделана большая увлекательная работа. Только поразмыслив о том, как запутана вся система и как сложны многочисленные разнообразные операции, которые она должна выполнять (в этой статье мы коснулись только некоторых из них), мы понимаем, что перед нами еще долгий путь. Но новые методы дают новые результаты, а новые результаты порождают новые идеи, так что нам не следует падать духом. Нет области науки более жизненно важной для человека, чем исследование его собственного мозга. От нее зависит все наше представление о Вселенной.

Литература

Мозг

Ramon у Cajal S. Histologie du systeme nerveux de Phomme et des vertebres, Consejo

Superior de Investigaciones Ceintificas, Institute Ramon у Cajal, 1952. Katz B. Nerve, muscle and synapse, McGraw-Hill Book Company, 1966. [Имеется

перевод: Катц Б. Нерв, мышца и синапс.-М.: Мир, 1968.] Clarke E. S., O'Malley С. В. The human brain and spinal cord, University Of

California Press, 1968.

Нейрон

Huffier S. W., Nicholls J.G. From neuron to brain: A cellular approach to the function of the nervous system, Sinauer Associates, Inc., Publishers, 1976. [Имеется перевод: Куффлер С., Николе Дж. От нейрона к мозгу.-М.: Мир, 1979.]

Steinbach J.H., Stevens С. F. Neuromuscular transmission. In: Frog Neurobiology: A Handbook (R. Llinas and W. Precht, eds..\ Springer-Verlag, 1976.

Hille B. Gating in sodium channels of nerve, Annual Review of Physiology, vol. 38, 139-152, 1978.

Stevens Ch.F. Interactions between intrinsic membrane protein and electric field: An approach to studying nerve excitability, Biophysical J., vol. 22, No. 2, 295-306, May, 1978.

Fambrough D.M. Control of acetylcholine receptors in skeletal muscle, Physiological Reviews, vol. 59, No. 1, 165-227, January, 1979.

Малые системы нейронов

Benzer S. Genetic dissection of behavior, Scientific American, vol. 229, No. 6, 24-37,

December, 1973. Nicholls J. G., van Essen D. The nervous system of the leech, Scientific American, vol.

230, No. 1, 38-48, January, 1974. Bentley D., Hoy R.R. The neurobiology of cricket song, Scientific American, vol. 231,

No. 2, 34-44, August, 1974. Kandel E.R. Cellular basis of behavior: An introduction to behavioral neurobiology,

W. H. Freeman and Company, 1976. [Имеется перевод: Кэндел Э. Клеточные

основы поведения.-М.: Мир, 1980.У Kandel E.R. Cellular insights into behavior and learning. In: Harvey Lectures, Series

73, 29-92, 1979.

Организация мозга

Herrick C.J. Neurological foundations of animal behavior, Henry Holt and

Company, 1924. Nauta W. J. H., Karten H. J. A general profile of the vertebrate brain with sidelights

on the ancestry of cerebral cortex. In: The neurosciences: Second study program

(F.O. Schmitt, ed.), Rockefeller University Press, 1970. Neurology. In: Gray's Anatomy. 35th British edition (R. Warwick and P.L. Williams,

eds.), W.B. Saunders Company, 1973.

Развитие мозга

Hunt R.К. Development programming for retinotectal patterns. In: Cell patterning:

Ciba foundation symposium 29, Associated Scientific Publishers, 1975. Rakic P. Cell migration and neuronal ectopias in the brain. In: Birth Defects:

Original articles Series, vol. 11, 95-129, 1975. Hubel D.H., Wiesel T.N., Levay S. Plasticity of ocular dominance columns in monkey

striate cortex. In: Philosophical transactions of the royal society of London, series

B, vol. 278, No. 961, 377^109, April 26, 1977. Cowan W.M. Aspects of neural development. In: International Review of physiology,

vol. 17: Neurophysiology III (R. Porter, ed.), University Park Press, 1978. Jacobson M. Developmental neurobiology, Plenum Press, 1978.

Химия мозга

Hall Z. W., Hildebrand J.G., Kravitz E.A. Chemistry of Synaptic transmission: Essays

and sources, Chiron Press, 1974. Iversen L.L., IversenS.D., Snyder S.H. Handbook of psychopharmacology, Plenym

Press, 1975-1978. Cooper J. R., Bloom F. E., Roth R. H. The biochemical basis of neuropharmacology,

Oxford University Press, 1978.

Hughes J. (ed.). Centrally Acting Peptides, University Park Press, 1978. Iversen S.D., Iversen L.L. Behavioral pharmacology, Oxford University Press, second

edition in press.

Центральные механизмы зрения

Mountcastle V.B. Modality and topographic properties of single neurons of cat's

somatic sensory cortex, J. of Neurophysiology, vol. 20, No. 4, 408-434, July, 1957. Hubel D. H., Wiesel T. N. Receptive fields and functional architecture of monkey

striate cortex, J. of Physiology, vol. 195, No. 2, 215-244, November, 1968. Hubel D.H., Wiesel T.N. Ferrier lecture: Functional architecture of macaque monkey

visual cortex, Proceedings of the Royal Society of London, Series B, vol. 198, 1-59,

1977. Hubel D.H., Wiesel T.N., Stryker M.P. Anatomical demonstration of orientation

columns in macaque monkey, J. of Comparative Neurology, vol. 177, No. 3,

361-379, February 1, 1978.

Механизмы головного мозга, управляющие движением

StelmachG.E. (ed.) Motor control: Issues and Trends, Academic Press, 1976.

Phillips C. G., Porter R. Corticospinal neurones: Their role in movement, Academic Press, 1977.

Kots Ya.M. The organization of voluntary movement: Neurophysiological mechanisms, Plenum Press, 1977.

Granit R. The purposive brain, The MIT Press, 1977.

Miles F. A., Evarts E. V. Concepts of motor organization, Annual Review of Psychology, vol. 30, 327-362, 1979.

Специализация человеческого мозга

Gainotti G. Emotional behavior and hemispheric side of the lesion, Cortex, vol. 8, No.

1, 41-55, March, 1972. Geschwind N. Selected papers on language and the brain, D. Reidel Publishing Co.,

1974.

Gazzaniga M.S., Ledoux J.E. The integrated mind, Plenum Press, 1978. Galaburda A.M. LeMay M., Kemper Th.L., Geschwind N. Right-left asymmetries in

the brain, Science, vol. 199, No. 4311, 852-856, February 24, 1978.

Заболевания человеческого мозга

Penrose L. S. The biology of mental defect, with a preface by J. B. S. Haldane, Grune and Stratton, 1962.

Shyder S. H. Madness and the brain, McGraw-Hill Book Company, 1974.

Ingvar D.H., Lassen N.A. (eds.) Brain work: The coupling of function, metabolism

and blood flow in the brain, Munksgaard, 1975. Kety S.S. The biological roots of mental illness: Their ramifications through cerebral

metabolism, synaptic activity, genetics and the environment, The Harvey Lectures,

Series 71, pp. 1-22, 1978. Kinney O.K., Matthysse S. Genetic transmission of schizophrenia, Annual Review of

Medicine, vol. 29, 459^73, 1978.

Мысли о мозге

Allman J.M., Kaas J.H., Lane R.H., Miezen P.M. A representation of the visual field

in the inferior nucleus of the pulvinar in the owl monkey (Aotus trivirgatus), Brain

Research, vol. 40, No. 2, 291-302, May 26, 1972. Brenner S. The Genetics of caenorhabditis elegans, Genetics, vol. 77, No. 1, 71-94,

January, 1974. Constantine-Paton M., Capranica R. R. Central projection of optic tract from

translocated eyes in the leopard frog (Rana pipiens), Science, vol. 189, No. 4201,

480-482, August 8, 1975.

назад содержание далее




ПОИСК:




© FILOSOF.HISTORIC.RU 2001–2021
Все права на тексты книг принадлежат их авторам!

При копировании страниц проекта обязательно ставить ссылку:
'Электронная библиотека по философии - http://filosof.historic.ru'
Сайт создан при помощи Богданова В.В. (ТТИ ЮФУ в г.Таганроге)


Поможем с курсовой, контрольной, дипломной
1500+ квалифицированных специалистов готовы вам помочь