Библиотека    Новые поступления    Словарь    Карта сайтов    Ссылки





назад содержание далее

Часть 11.

Какая логика привела нашего физиолога к открытию двух важных процессов в коре больших полушарий, а именно процессов иррадиации и концентрации раздражений?

С целью обнаружения все новых и новых фундаментальных характеристик высшей нервной деятельности Павлов изобретал самые неожиданные способы применения метода условных рефлексов. Так, он начал использовать прием сдвоенных контрастных экспериментов. Определенное явление сначала изучалось с помощью одного эксперимента, а затем исследование продолжалось с помощью противоположного эксперимента. Этот прием в конце концов и привел Павлова к только что упомянутому открытию.

Какие факты были получены с помощью этого приема и каким образом на их основе были сформированы понятия названных процессов?

Первая часть сдвоенного эксперимента. Экспериментатор выбирает условный рефлекс на 800 колебаний метронома в секунду. После этого он пробует другие тона. Оказывается, что и они вызывают секреторную реакцию слюнной железы, даже если и достаточно сильно отличаются числом колебаний от первоначального тона: реакцию вызывают тона в 100, 200 и даже в 2000, 3000 колебаний. Больше того, животное реагирует и на любые другие звуки. Павлов в своих опытах руководствовался идеей, что каждый определенный раздражитель (определенный звук и т.п.) фиксируется в мозгу в определенных клетках. В этом случае реакция должна бы быть только на первоначальный тон. Но поскольку эффект показывает иную картину, он делает вывод, что этот раздражитель не закрепляется в каких-то определенных клетках, а распространяется по всему слуховому центру и поэтому всякий другой звук вызывает ответную реакцию. Логическим основанием для такого вывода было правило изоморфизма: поскольку реакция вызывается любым звуком ( первое множество внешне наблюдаемых элементов), то в коре мозга исходный условный раздражитель распределился по такому же множеству пунктов слухового центра. Рассуждение академика звучит так: “ Вот этот факт, — что мы соединили пищевой центр только с одним раздражением, а раздражение оказалось обобщенным, — дает основание говорить о законе иррадиирования, представлять себе дело так, что раздражение, пришедшее в определенные клетки больших полушарий, не остается там, куда попало впервые, а разливается по клеткам соседним”[57].

Вторая, контрастная часть эксперимента. Если в первой части опыта рефлекс вырабатывался в течение относительно короткого времени, то теперь раздражитель в 800 колебаний повторяется довольно долго. Это приводит к тому, что постепенно отпадают реакции на другие тона, пока, наконец, реакцию вызывает только тон в 800 колебаний, а тон даже в 812 колебаний реакции уже не дает. Перед нами противоположная картина: с одной стороны — множество различных раздражающих тонов, а с другой — реакция только на один тон. Правило изоморфизма позволяет установить отношение только между одной реакцией и одним видом раздражителя, остальные же раздражители не имеют своих коррелятов в слуховом центре — они исчезли, исходный раздражитель зафиксировался в одном пункте. У Павлова это соотношение получает такую трактовку: “Раньше разлившееся раздражение теперь концентрируется, собирается к одному пункту. Это подало повод рядом с законом иррадиирования выставить и закон концентрирования”[58].

Особенностью описываемого приема экспериментирования является то, что он дает две агенто-эффектные структуры, т.е. структуры, объединяющие в себе агенты, объекты воздействия и эффекты. Сопоставление этих структур еще до того, как были сделаны заключения относительно процессов в мозгу, выявляет противоположный характер как первых компонентов этих структур — агентов, так и третьих — эффектов. Но если противоположны друг другу крайние компоненты соотнесенных структур, то должны быть противоположны и средние компоненты. Этого требуют правила адекватности компонентов внутри каждой структуры. Такой вывод весьма эвристичен, так как ориентирует исследователя на формирование искомого реконструкта в виде противоположных факторов. Противоположность внешних ситуаций указывала на наличие противоположностей во внутренних, недоступных наблюдению процессах. Результативность описываемого приема экспериментирования говорит о полезности использования в опытах разных пар агентов, причем последние должны обладать противоположными характеристиками. Каждая из таких пар может способствовать выявлению какой-либо пары противоположных факторов в изучаемом явлении.

Это правило может, в частности, способствовать тому, что та или иная пара полярных агентов может быть применена к другой форме или к другому проявлению открытого ранее с помощью другого сдвоенного эксперимента феномена. Именно так случилось, когда И.П.Павлов начал проводить опыт по воздействию на агрессивный центр собаки. Этот опыт уже с другой стороны подвел к открытию процессов иррадиации и концентрации. Этот эксперимент также позволил получить систему из двух контрастных агенто-эффектных структур. Обнаруженная в результате сопоставления этих структур противоположность внешних моментов указала на наличие противоположности внутренних, ненаблюдаемых моментов[59].

Конкретный характер вновь открытых процессов был определен Павловым путем сопоставления вполне определенных содержаний начального и конечного компонентов каждой из структур — раздражителей и реакций на них. Эффективность приема контрастных экспериментальных структур состоит в том, что в них искомые данные выступают в виде различий, которые легко выявляются при сопоставлении этих структур. Таким образом относительно легко удается получить необходимые для последующей мыслительной работы факты. Операции же с полученными данными осуществляются на основе уже известных в данной дисциплине соотношений, зависимостей, законов. А кроме того, искомые выводы из данных формируются с помощью более общих, часто универсальных содержательных правил, сформулированных на основе таких отношений, как каузальные, функциональные, изо- и гомоморфные и т.п. Весь комплекс подобных правил, как частных, так и общих, и образует содержательную логику поискового мышления.

Итак, оперируя методом эффектов и охарактеризованной только что логикой творческого поиска, Павлов сделал еще одно открытие — открытие закона иррадиации и концентрации раздражений, во многом определяющего ход нервных процессов в больших полушариях. Оценивая значение этого закона, ставя его по важности наряду с законом взаимной индукции, Павлов писал: “Деятельность больших полушарий, как, надо думать, и всей центральной нервной системы с ее двумя процессами — раздражения и торможения, управляется двумя основными законами: законом иррадиирования и концентрирования каждого из этих процессов и законом их взаимной индукции”[60].

Кстати, если внимательно всмотреться в подробно описанный выше словами Ньютона его опыт с тремя призмами, то в нем также можно увидеть использование приема сдвоенных контрастных экспериментов. Таким образом, история применения этого приема достаточно давняя и тем не менее до сих пор неисследовавшаяся.

7. Искусность в использовании метода эффектов

Более результативному использованию метода эффектов способствует ряд особых качеств творческого интеллекта. Так, для получения как можно более красноречивых фактов важно ставить нешаблонные и весьма разнообразные эксперименты. И.П.Павлов называл такое качество изощрением в варьировании опытов[61]. Сам академик в течение 35 лет пользовался в основном одним и тем же методом — методом условных рефлексов, получая все новые и новые результаты. Сколько же нужно было проявить изобретательности в постановке экспериментов, чтобы не исчерпать возможности этого метода, не начать топтаться на месте, а, напротив, непрерывно обновлять исследовательский процесс методическими нововведениями.

Для обнаружения эффектов важно не только быть искусным в экспериментировании, но необходимо также быть крайне наблюдательным. Дело в том, что эксперименты могут давать не только ожидаемые эффекты. Нередки случаи, когда стихийно в ходе экспериментальных исследований появляются совершенно невероятные, неожиданные эффекты, а главное, не всегда бросающиеся в глаза. Тем не менее подобные эффекты могут оказаться необычайно информативными. Не упустить из вида такие эффекты, усмотреть их может помочь только острая, постоянно находящаяся начеку наблюдательность.

При постановке опытов важна не только необычайная изобретательность, но в такой же мере необходима и дерзость. Это значит, что нужна склонность к проведению, казалось бы, самых неестественных, нереалистичных, немыслимых опытов. В отношения взаимодействия в таких случаях могут быть поставлены явления, которые по общепринятым представлениям как будто бы не должны дать никакого позитивного результата. Но именно такие опыты помогали обнаруживать глубинные связи и свойства явлений, которые при поверхностном взгляде на них казались чуждыми и посторонними друг для друга.

Поиск необходимых для развертывания познавательного процесса эффектов не следует ограничивать искусственно, т.е. с помощью экспериментов полученными фактами. Помимо человека эффекты творит сама природа, и важно уметь видеть их и использовать в качестве исходного материала для последующей мыслительной работы. Такими эффектами успешно пользовались в своих мыслительных построениях еще древние ученые, когда экспериментальные исследования фактически не были нормой познавательной деятельности. Так, великий астроном античности Аристарх Самосский (3 век до н.э.) благодаря естественному эффекту смог построить первую гелиоцентрическую модель солнечной системы. Этим эффектом была тень, падавшая от Земли на Луну[62].

Прийти к такому выдающемуся результату Аристарху помогла способность строить далеко идущие и глубокие рассуждения, исходя из скудных предпосылок. В других случаях к важному выводу может привести такое качество, как проницательность — умение увидеть в каком-либо внешне кажущемся несущественным явлении эффект, свидетельствующий о фундаментальном факте. Такую проницательность мы находим у Тита Лукреция Кара (1 век до н.э.) в его рассуждении, доказывающем существование атомов — “незримых первоначал вещей”:

«Всякий раз, когда солнечный свет проникает

В наше жилище и мрак прорезает своими лучами,

Множество маленьких тел в пустоте, ты увидишь, мелькая,

Мечутся взад и вперед в лучистом сиянии света...

Мог из этого ты уяснить себе, как неустанно

Первоначала вещей в пустоте необъятной мятутся.

Так о великих вещах помогают составить понятье

Малые вещи, пути намечая для их постиженья.

Кроме того, потому обратить тебе надо вниманье

На суматоху в телах, мелькающих в солнечном свете,

Что из нее познаешь ты материи также движенья,

Происходящие в ней потаенно и скрыто от взора»[63].

Проницательность выражается также в способности увидеть большой эвристический потенциал того или иного эффекта, понять его возможности в постижении глубинных явлений. Такая проницательность видна, например, в высказывании Г.А.Лоренца о больших перспективах исследования эффекта Зеемана: “Изучение эффекта Зеемана является превосходным средством для проникновения в тайны строения материи”[64].

При объяснении такого естественного эффекта, как дрейф материков, английский геолог Артур Холмс проявил такое важное качество поискового мышления, как находчивость (1928 г.). Теория Вегенера о движении континентов не давала объяснения фактора и механизма этого движения. Холмс усмотрел такой фактор в тепловом действии радиоактивности[65]. Предположив наличие в слое вязкой мантии Земли радиоактивного процесса, генерирующего тепло, он смог истолковать его как агента, способного привести в движение материки. После такого предположения нетрудно было построить механизм, приводящий эти части земной коры в движение. Представления о тепловых процессах, заимствованные из термодинамики, послужили основой логики такого построения. Из этих представлений следовало, что в мантии с необходимостью возникают конвективные течения — движение вверх разогретых потоков вязкой массы, которые, достигнув границы твердой коры, начинают растекаться в стороны и увлекают ее за собой. Находчивость английского геолога проявилась в том, что он сумел в тогдашней системе знания, а именно в ядерной физике, увидеть искомый фактор — радиоактивность, и умело перенес его в сферу проблематичного геологического явления.

8. Области применения метода эффектов

Изложенное нами понимание эффекта как явления, порожденного взаимодействием как минимум каких-либо двух других явлений и объектов, позволяет применить его к бесчисленному количеству феноменов — событий, процессов, свойств и т.д. Из этого следует, что множество явлений может быть познано с помощью метода эффектов, а поэтому вполне оправданно говорить о возможности эффектового подхода к огромному классу явлений. Нами было показано успешное использование этого подхода в физике и физиологии. В физике этот подход и, соответственно, метод применялся всегда и притом довольно интенсивно, когда открывались явления, способные к активному воздействию на другие объекты или явления — магнетизм, электрический ток, радиоактивность, различные виды электромагнитного излучения и т.п. Формировались целые области физической науки, которые во многом опирались на метод эффектов.

Одной из таких областей является спектроскопия. Используя в качестве средства исследования взаимодействие излучения с веществом, она по соответствующим эффектам изучает уровни энергии и структуру атомов, молекул и образованных из них макроскопических систем. Разработаны специальные методы возбуждения спектров (т.е. получения эффектов), среди которых особенно продуктивной оказалась лазерная спектроскопия. С помощью других средств внешнего воздействия на спектры (изменение температуры, наложение электрического и магнитного полей) удается получить информацию о механизмах взаимодействия света с веществом, о переносе и преобразовании энергии возбуждения в кристаллах, данные о структуре кристаллической решетки, о характере дефектов в кристаллах. Подобные исследования позволяют также изучать изменение частоты рассеянного света, связанное с динамическими процессами в кристаллах. Метод эффектов во всех этих случаях выступает в форме опытов по рассеянию и поглощению излучения в процессе его взаимодействия с микро- и макрообъектами.

Метод эффектов лежит также в основе работы такого важного инструмента современной физики, как ускорители заряженных частиц. В качестве агентов здесь выступают пучки ускоренных заряженных частиц — мезонов, нейтронов, фотонов и др. Эти пучки используются для изучения природы и свойств элементарных частиц, внутреннего строения атомных ядер, энергий связи нуклонов в ядрах. Этот метод используется также в физике твердого тела для определения поверхностной и объемной структуры этих тел, в химии, биофизике и геофизике.

Различные конкретные формы метода эффектов широко применяются в гидроакустике — научной и практической дисциплине, изучающей распространение звуковых волн в водной среде. Поскольку никакие виды электромагнитного излучения, в том числе и свет, не распространяются в воде на сколько-нибудь значительные расстояния, то звук является единственно возможным средством проведения исследований в воде без непосредственного присутствия там человека. Наиболее эффективными средствами при этом являются гидролокаторы, эхолоты. С их помощью определяют глубину водоемов, обнаруживают подводные препятствия, проводят поисковые работы. В океанологии гидролокация используется в качестве средства исследования физических свойств океана, при проведении картографирования морского дна. Гидролокационные приборы созданы на основе звукового эхо. Расстояние до подводного объекта определяется по таким эффектам, как запаздывание отраженного звука и изменение его частоты.

В сейсмологии в исследовательских целях используются как искусственно созданные (с помощью взрывов), так и естественные эффекты, а именно отраженные сейсмические волны. Они позволяют получить информацию с больших глубин нашей планеты и сформировать представления об имеющих там место структурах и процессах. Знания о распространении и отражении сейсмических волн позволяют рассчитать плотность, давление, ускорение силы тяжести и другие величины, характеризующие недра Земли. Эти же знания позволили построить сейсмическую модель нашей планеты (1914 г.), которая помимо коры включала мантию и ядро, определяла их границы и ряд физических свойств. В 1930 году только что описанная структура Земли была дополнена еще одним элементом — внутрь ядра было помещено еще одно, меньшее по размерам центральное ядро. Это сделала сейсмолог из Дании И.Леманн. Основанием были ее наблюдения за прошедшими через ядро Земли волнами от землетрясений в Тихом океане[66].

Находит свое применение метод эффектов в социальных и гуманитарных науках. Объектом исследования в данном случае становятся эффекты, вызываемые в социальных процессах и общностях какими-либо событиями. В качестве примера частной формы метода эффектов в этой сфере можно привести метод опроса. С его помощью изучаются поведенческие и психологические реакции (ощущения, переживания, мнения и т.д.) групп населения на те или иные факты социальной жизни.

В психологии метод эффектов нашел своего гения в лице Зигмунда Фрейда. Разработав специфическую для области психики форму этого метода, он смог с его помощью проникнуть в ранее недоступные для исследователей глубины сознания и бессознательного. Фрейд довольно четко описал применявшийся им метод. Проанализировав это описание, мы видим в нем и агента (психоаналитик с его требованиями к пациенту), и объект воздействия (психика этого пациента), и эффект (высказанные пациентом мысли). Вот это описание: “...Я требовал от своих больных, чтобы они говорили мне все, что им приходит в голову, они ведь знают все как будто позабытое, и первая возникающая мысль, конечно, будет содержать искомое. При этом опыт показал мне, что действительно первая случайная мысль содержала как раз то, что было нужно, и представляла собою забытое продолжение рассказа”[67]. Обосновывая свой метод, Фрейд далее пишет, что он “...всегда был самого высокого мнения о строгой детерминации душевных процессов, а следовательно, и не мог верить тому, что возникающая у больного мысль, при напряжении внимания с его стороны, была бы совершенно произвольна и не имела бы никакого отношения к искомому нами забытому представлению”[68]. Психоаналитик требует от больного, чтобы он не критиковал своих мыслей: “Он должен все говорить, совершенно отказавшись от подобной критической выборки, все, что приходит ему в голову, даже если он считает это неправильным, не относящимся к делу... Следуя этому правилу, мы обеспечиваем себя материалом, который наведет нас на след вытесненных комплексов. Этот материал из мыслей, которые больной не ценит и отбрасывает от себя, ...представляет собою для психоаналитика руду, из которой он с помощью простого искусства толкования может извлечь драгоценный металл”[69].

Работа с этим методом — весьма трудное дело. Но как и в других областях знания, он часто оказывается единственным и достаточно продуктивным, а поэтому не следует отказываться от этого метода, а напротив, действовать в соответствии с высказыванием великого психолога, которое звучит как совет чрезвычайно опытного исследователя: “Если вам этот путь отыскания кажется слишком сложным, то я могу вас по крайней мере уверить, что это — единственно возможный путь”[70].

[1] Ньютон И. Оптика. М.;Л., 1927. С. 51.

[2] Там же.

[3] Там же. С. 52-54.

[4] См.: Эрстед Г.Х. Опыты, относящиеся к действию электрического конфликта на магнитную стрелку // Ампер А.М. Электродинамика. Л., 1954. С. 433-439.

[5] Там же. С. 437.

[6] Там же. С. 438.

[7] Там же.

[8] См: Кудрявцев П.С. Курс истории физики. М., 1974. С. 245-246.

[9] См.: Эйнштейн А. Собр. науч. тр. Т. 3. М., 1966. С. 92-107.

[10] См.: Комптон А., Алисон С. Рентгеновские лучи: теория и эксперимент. М.; Л., 1941.

[11] Павлов И.П. Двадцатилетний опыт объективного изучения высшей нервной деятельности (поведения) животных. М., 1973. С. 369.

[12] Там же. С. 225.

[13] Там же. С. 18.

[14] Там же.

[15] Там же. С. 42.

[16] Там же. С. 226.

[17] Павлов И.П. Полн собр. соч. 2 изд. Т. 4. М.; Л., 1951. С. 21.

[18] Павлов И.П. Двадцатилетний опыт ... С. 231.

[19] Там же. С. 23.

[20] Там же.С. 25.

[21] Там же. С. 174.

[22] Там же. С. 489.

[23] Там же. С. 47.

[24] Там же.

[25] Там же. С. 112.

[26] Там же. С. 81.

[27] Там же.

[28] Там же. С. 247.

[29] Павлов И.П. Полн. собр. соч. Т. 4. С. 395.

[30] Павлов И.П. Двадцатилетний опыт... С. 417.

[31] Там же. С. 288, 75.

[32] Там же. С. 370.

[33] Там же. С. 10.

[34] Павлов И.П. Полн. собр соч. Т. 4. С. 22.

[35] Павлов И.П. Двадцатилетний опыт... С. 534.

[36] Павлов И.П. Полн. собр. соч. Т. 4. С. 39.

[37] Павлов И.П. Двадцатилетний опыт... С. 83.

[38] Там же. С. 81, 63.

[39] Там же. С. 43.

[40] Там же. С. 39.

[41] Там же. С. 214.

[42] Там же. С. 42.

[43] Там же. С. 46.

[44] Там же. С. 535.

[45] Там же. С. 370.

[46] Там же. С. 65.

[47] Там же. С. 241.

[48] Там же. С. 447-448.

[49] Там же. С. 18.

[50] Там же. С. 46.

[51] Павлов И.П. Полн. собр. соч. Т. 4. С. 17.

[52] Там же. С. 15.

[53] Павлов И.П. Двадцатилетний опыт... С. 77.

[54] Там же. С. 76.

[55] Там же. С. 77.

[56] Там же.

[57] Там же. С. 140.

[58] Там же.

[59] Там же. С. 185-186.

[60] Там же. С. 399.

[61] Там же. С. 388.

[62] См.: Веселовский И.Н., Белый Ю.А. Николай Коперник. М., 1974. С. 180.

[63] Тит Лукреций Кар. О природе вещей. М., 1983. С. 61-62.

[64] Лоренц Г.А. Старые и новые проблемы физики. М., 1970. С. 204.

[65] См.: Хэллем Э. Великие геологические споры. М., 1985. С. 162-164.

[66] См.: Жарков В.Н., Козенко А.В. Крупнейший геофизик ХХ века // Природа. 1991. № 4. С. 81.

[67] Фрейд З. О психоанализе // Хрестоматия по истории психологии. М., 1980. С. 163.

[68] Там же. С. 164.

[69] Там же. С. 166.

[70] Там же. С. 165.

Глава 6. ПРЕОДОЛЕНИЕ НАУЧНЫХ ПАРАДОКСОВ

1. Суть парадоксов и их классификаци

Парадокс — это такая ситуация в научном познании, которая характеризуется наличием двух противоположных, взаимоисключающих утверждений по одному и тому же вопросу, причем каждое из утверждений имеет свои аргументы. Но поскольку подобная ситуация вступает в конфликт с логическим законом непротиворечивости, то перед учеными стоит задача преодоления ее, перевода знания в состояние когерентности.

Проблема парадоксов требует выяснения нескольких вопросов. Это прежде всего вопросы об условиях и причинах возникновения парадоксов, об их роли в познавательном процессе. Главным является вопрос о способах разрешения парадоксов, а также о способах их преднамеренного генерирования. Все эти характеристики различны у разных парадоксов, а поэтому важным оказывается и вопрос о классификации парадоксов.

В зависимости от того, к какому типу знания — эмпирическому или теоретическому — относится каждое из противоположных утверждений, можно говорить о следующих типах парадоксов: эмпирико-эмпирических, внутритеоретических, межтеоретических, теоретико-эмпирических.

Эмпирико-эмпирические парадоксы. Это такие парадоксы, в которых оба противоречащих утверждения имеют своим содержанием фактуальное знание, знание, полученное из опыта. Каждое из таких утверждений говорит об одном и том же факте, но говорит о нем по-разному, сообщает о нем нечто иное, противоположное. Одной из распространенных причин такой разноречивости являются ошибки экспериментов или наблюдений, неточности в их проведении, использование разных по степени совершенства способов и средств исследования.

В 1844 году знаменитый немецкий химик Э.Митчерлих опубликовал статью, в которой писал, что виноградная кислота обладает теми же химическими свойствами, таким же составом и строением, что и винная кислота. Но при этом оказывалось, что в отличие от последней виноградная кислота оптически пассивна, т.е. не обладает способностью отклонять поляризованный луч. Авторитет этого химика был настолько велик, что никто не сомневался в истинности его утверждения относительно идентичности свойств и строения этих кислот. Но тем не менее парадокс был налицо, и он требовал разрешения. Оставаясь на точке зрения Митчерлиха о сходстве данных кислот во всем, кроме оптических способностей, ни он сам, ни другие крупные химики не могли разрешить эту загадку. Выйти из затруднения помогла смелость молодого французского ученого Л.Пастера, который усомнился в правоте известного авторитета и допустил возможность ошибочности утверждений Митчерлиха об одинаковости строения кислот. Посредством тончайших, скрупулезных и необычайно трудоемких опытов он действительно обнаружил различия в строении этих веществ и этим объяснил разницу оптических свойств данных кислот[1].

Таким образом, средством разрешения парадоксов, как в этом, так и в других аналогичных случаях, является проведение более тщательных экспериментальных исследований, использование более совершенных методик и инструментов.

В других случаях причиной эмпирико-эмпирических парадоксов может быть неучитывание каких-либо свойств, факторов или условий, имеющих значение для того или иного явления. Вследствие этого также возникают противоречащие друг другу утверждения. В таких ситуациях выход заключается в более разностороннем, более разноплановом и широком изучении явления. Такое изучение поможет найти тот фактор или то условие, значение которых позволит устранить парадокс, примером чего может служить, скажем, ситуация с так называемым парадоксом прочности в геологии[2]. В данном случае суть парадокса состояла в том, что по одним представлениям Земля и составляющие ее породы обладают большой твердостью, так что, например, при крупных землетрясениях наша планета реагирует подобно гигантскому колоколу, а породы можно разбить молотком. С другой же стороны, эти породы обладают большой пластичностью, о чем свидетельствует тот факт, что в горах они смяты в сложные складки. Проблема разрешилась, когда была установлена способность пород к пластической деформации, к поведению наподобие вязкой жидкости, что происходит под влиянием относительно слабых, но длительно действующих напряжений. Таким образом, под действием какого-либо фактора или условия тот или иной объект способен проявлять самые разные и даже противоположные свойства, отчего о нем и возникают противоречивые суждения.

Внутритеоретические парадоксы. Эти парадоксы выступают в форме противоречий между утверждениями или понятиями какой-либо одной теории. Самой распространенной их причиной является появление аномального для этой теории содержания, которое, однако, исследователи пытаются описать, объяснить, интерпретировать с помощью концептуальных средств данной теории. В результате этого неизбежно возникает противоречие между этим содержанием и характером его описания или истолкования.

Одним из ярких примеров такого парадокса является понятие эфира. Эта вездесущая субстанция была введена по чисто механическим соображениям, по аналогии со звуковыми волнами, распространяющимися в воздухе. Эфир был той средой, в которой якобы распространялись световые волны. Но поскольку эти волны были поперечными, то эфир должен был быть твердым, несжимаемым телом. Но тогда небесные тела должны были двигаться в таком теле, не испытывая сопротивления. Позднее эфиру пришлось приписать еще одно исключительное свойство — его признали привилегированной системой отсчета, неподвижной относительно всех других систем. Нагромождение таких неестественных и противоречивых свойств привело в конце концов это понятие в конфликт с основами теории, притом теории новой, которая отказалась от механистической интерпретации света и других электромагнитных явлений. Это была специальная теория относительности. Получивший в ней расширенное толкование принцип относительности привел к выводу о неправомерности допущения существования какой-либо привилегированной системы отсчета, что и потребовало устранения из физики представления об эфире[3]. В этом примере просматривается один из чрезвычайно продуктивных способов разрешения парадоксов. Поскольку причиной подобных парадоксов является использование неадекватных концептуальных средств и представлений, то преодолеть парадокс можно благодаря выходу к новой, адекватной аномальному явлению теории и отвержения прежних взглядов с позиций этой теории. Аналогичную природу имел парадокс в электродинамике движущихся тел, вызванный гипотезой Лоренца о сокращении размеров тел в направлении их движения. Разрешение этого парадокса было достигнуто таким же способом посредством осмысления соответствующих явлений с позиций новых представлений о пространстве и времени, выработанных Эйнштейном[4].

назад содержание далее



ПОИСК:




© FILOSOF.HISTORIC.RU 2001–2023
Все права на тексты книг принадлежат их авторам!

При копировании страниц проекта обязательно ставить ссылку:
'Электронная библиотека по философии - http://filosof.historic.ru'