спрашивают себя: «Следует ли видоизменить язык физики, чтобы приспособить его к соотношению неопределенностей? Если да, то как?»
Большинство крайних предложений такого видоизменения касается изменения формы логики, которая используется в физике. Филипп Франк и Мориц Шлик (Шлик тогда был философом в Вене, Франк — физиком в Праге) впервые совместно выразили взгляд, что при некоторых условиях конъюнкция двух осмысленных утверждений в физике должна рассматриваться как лишенная смысла фраза. Примером могут служить два предсказания о значениях сопряженных величин для той же самой системы, в то же самое время. Пусть утверждение А предсказывает точно координаты частицы для некоторого момента времени. Пусть утверждение В выражает три компоненты импульса той же самой частицы, для того же самого момента времени. Из принципа неопределенности Гейзенберга мы знаем, что здесь имеется только два выбора.
1. Мы можем сделать эксперимент, с помощью которого узнаем (конечно, при наличии хороших инструментов) положение частицы, хотя и не с абсолютной, но большой точностью. В этом случае мы должны считать наше определение импульса частицы очень неточным.
2. Мы можем вместо этого сделать другой эксперимент, посредством которого мы измерим с большой точностью компоненты импульса частицы. В этом случае мы должны довольствоваться большой неточностью в определении положения частицы.
Короче, мы можем проверить либо А, либо В. Мы не можем проверить конъюнкцию «А и В». Мартин Страус, ученик Франка, написал докторскую диссертацию по этой и связанной с нею проблемам. Позже он работал с Нильсом Бором в Копенгагене. Страус утверждал, что конъюнкция А и В должна рассматриваться как лишенная смысла, потому что здесь она не подтверждается. Мы можем, если захотим, верифицировать А с желаемой степенью точности. То же самое можно сделать с В. Но мы не можем сделать это для «А и В». Эта конъюнкция не должна, таким образом, рассматриваться как осмысленное утверждение. По этим причинам Страус утверждал, что правила образования (пра-
378
вила, характеризующие допустимые формы предложений) языка физики должны быть видоизменены. По моему мнению, такое радикальное изменение нежелательно.
Другое, сходное предложение было выдвинуто математиками Гарретом Биркгофом и Джоном фон Нейманом 1. Они предложили изменить не правила образования, а правила преобразования (правила, с помощью которых могут быть выведены одни предложения из других). Они предложили, чтобы физики отклонили дистрибутивные законы в логике высказываний.
Третье предположение было сделано Гансом Рей-хенбахом, который предложил заменить традиционную двухзначную логику трехзначной логикой 2. В такой логике каждое утверждение будет иметь одно из трех возможных значений: Т (истина), F (ложь) и (неопределенность). Классический закон исключенного третьего (утверждение должно быть либо истинным, либо ложным, никакой третьей возможности не существует) в трехзначной логике заменяется законом исключенного четвертого. Каждое утверждение должно быть либо истинным, либо ложным, либо неопределенным. Никакой четвертой возможности не существует. Например, утверждение В о импульсе частицы может оказаться истинным, если сделать подходящий эксперимент. В таком случае другое утверждение А о положении частицы будет неопределенным. Оно неопределенно потому, что невозможно в принципе определить его истинность или ложность в тот же самый момент времени, когда подтверждается утверждение В. Конечно, вместо этого ложно рассматривать подтверждение А. Тогда неопределенным будет В. Иными словами, в современной физике существуют ситуации, в которых если некоторые утверждения являются истинными, другие должны быть неопределенными.
Чтобы согласовать эти три истинностных значения, Рейхенбах счел необходимым иначе определить обыч-
1. См.: Garret Birkhoff and John von Neumann, The Logic of Quantum Mechanics, «Annals of Mathematics», 37 (1936), p. 823—843.
2. См.: Hans Reichenbach, Philosophic Foundations of Quantum Mechanics (Berkeley, University of California Press, 1944).
379
ные логические связи (импликацию, дизъюнкцию, конъюнкцию и т. п.) с помощью таблиц истинности, гораздо более сложных, чем те, которые используются для определения логических связок в знакомой нам двухзначной логике. Кроме того, он предложил ввести новые связки. Снова я чувствую, что если было бы необходимо усложнить таким образом логику ради усовершенствования физического языка, то это оказалось бы приемлемым. В настоящее время я, однако, не могу видеть необходимости для такого радикального шага.
Мы должны, конечно, подождать, чтобы посмотреть, как пойдут дела при будущем развитии физики. К несчастью, физики редко предлагают свои теории в форме, которую хотелось бы видеть логику. Они не говорят: «Это — мой язык, вот — исходные термины, здесь мои правила образования, вот — логические аксиомы». (Если бы они давали по крайней мере свои логические аксиомы, то мы могли бы тогда увидеть, находятся ли эти аксиомы в согласии с аксиомами Неймана или Рейхен-баха, или же они предпочитают классическую двухзначную логику.) Было бы также хорошо иметь постулаты всей области физики, установленные в систематической форме, которые включали бы формальную логику. Если бы это было сделано, было бы легче определить, существуют ли хорошие основания для изменения лежащей в основе теории логики.
Здесь мы затрагиваем еще не разрешенную, глубокую проблему языка физики. Этот язык, за исключением его математической части, остается все еще в основном естественным языком, то есть его правила неявно узнаются на практике и редко формулируются явным образом. Конечно, в языке физики были приняты тысячи новых терминов и фраз, в некоторых случаях были созданы специальные правила, чтобы действовать с некоторыми из этих специальных терминов и символов. Подобно языкам других наук, язык физики непрерывно увеличивает свою точность и эффективность. Эта тенденция будет, конечно, продолжаться. Однако в настоящее время развитие квантовой механики еще полностью не отражено в уточненном языке физики.
Трудно предсказать, как будет изменяться язык физики. Но я убежден, что две тенденции, которые привели к значительному усовершенствованию языка
380
математики в течение последней половины столетия, докажут свою эффективность в уточнении языка физики и в придании ему большей ясности (применение современной логики и теории множеств и принятие аксиоматического метода в его современной форме, предполагающей формализованные системы языка). В современной физике, в которой не только содержание теорий, но также вся понятийная структура дискуссионны, оба эти метода могут оказаться очень полезными.
Здесь есть захватывающая цель, которая требует тесной кооперации физиков и логиков, а еще лучше — работы более молодых людей, которые изучали как физику, так и логику. Я верю, что применение современной логики и аксиоматического метода в физике даст значительно больше, чем только содействие улучшению коммуникабильности между физиками и между физиками и другими учеными. Оно будет способствовать осуществлению более глубоких задач: тогда легче будет создавать новые понятия и формулировать новые предположения. Огромное число новых экспериментальных результатов, собранных в последние годы, во многом обязано значительному усовершенствованию экспериментальных инструментов, таких, как большие атомные ускорители. На основе этих результатов был достигнут огромный прогресс в разработке квантовой механики. К несчастью, усилия по перестройке теории, направленные на то, чтобы все новые данные подходили к ней, не были успешными. Возникли некоторые неожиданные головоломки, ставящие в тупик затруднения. Их разрешение представляет неотложную, но наиболее трудную задачу. Кажется справедливым предположить, что использование новых понятийных средств может оказать здесь существенную помощь.
Некоторые физики считают, что имеются хорошие шансы для нового прорыва в ближайшем будущем. Будет ли это раньше или позже, мы можем верить — при условии, что ведущие государственные деятели мира не допустят полного безумия ядерной войны и позволят человечеству выжить, — что наука будет продолжать свое быстрое прогрессивное развитие и приведет нас к еще более глубокому проникновению в структуру мира.
381
БИБЛИОГРАФИЯ
Книги общего характера
Richard В. Braithwaite, Scientific Explanation, Cambridge, Cambridge University Press, 1953.
Percy W. Bridgman, The Logic of Modern Physics, New York, Macmillan, 1927.
Norman R. Campbell, Physics: The Elements, Cambridge, Cambridge University Press, 1920. Norman R. Campbell, What Is Science? London, Methuen, 1921.
Philipp Frank, Philosophy of Science, Englewood Cliffs, N. J., Prentice-Hall, 1957.
Werner Heisenberg, Physics and Philosophy: The Revolution in Modern Science, New York, Harper, 1958.
Carl G. Hempe1, Aspects of Scientific Explanation and Other Essays in the Philosophy of Science, Glencoe, 111., Free Press, 1965.
Carl G. Hempel, International Encyclopedia of Unified Science, Vol. 2, № 7; «Fundamentals of Concept Formation in Physical Science», Chicago, University of Chicago, Press, 1952.
Gerald Holton and Duane Roller, Foundations of Modern Physical Science, Reading, Mass., Addison-Wesley, 1958.
John Kemeny, A Philosopher Looks at Science, Princeton, N. J., D. Van Nostrand, 1959.
Ernest Nagel, The Structure of Science, New York, Harcourt, Brace & World, 1961.
Karl Popper, The Logic of Scientific Discovery, New York, Basic Books, 1959.
Bertrand Russell, Human Knowledge: Its Scope and Limits, New York, Simon & Schuster, 1948.
Israel Sсheff1er, The Anatomy of Inquiry, Cambridge, Mass., Harvard University Press, 1963. Stephen Toulmin, The Philosophy of Science, London, Hutchinson's Universal Library, 1953.
382
Сборники статей
Arthur Danto and Sidney Morgenbesser, eds., Philosophy of Science, Cleveland, Ohio, Meridian, 1960.
Herbert Feigl and May Brodbeck, eds., Readings in the of Science, New York, Appleton-Century-Crofts, Philosophy 1953.
Herbert Feigl and Wilfrid Sellars, eds., Readings in Philosophical Analysis, New York, Appleton-Century-Crofts, 1949.
Herbert Feigl, Michael Scriven and Grover Maxwell, eds., Minnesota Studies in the Philosophy of Science, Minneapolis, Minn., University of Minnesota Press, Vol. I,1956; Vol. II, 1958, Vol. Ill, 1962.
Edward H. Madden, ed., The Structure of Scientific Thought, Boston, Mass., Houghton Mifflin, 1960.
Paul Arthur Schilpp, ed., The Philosophy of Rudolf Carnap, La Salle, 111., Open Court, 1963. Paul Arthur Schilpp, ed., Albert Einstein: Philosopher-Scientist, Evanston, 111., Library of Living Philosophers, 1949. Philip Wiener, ed., Readings in the Philosophy of Science, New York, Scribner, 1953.
Измерение
Norman R. Campbell, Physics: The Elements, op. cit., Part «Measurement».
Carl G. Hempel, Fundamentals of Concept Formation in Empirical Science, op. cit., Ch. 3. Victor F. Lenzen, International Encyclopedia of Unified Science, Vol. I, № 5: «Procedures of Empirical Science». Chicago, 111.; University of Chicago Press, 1938.
Пространство и врем
Albert Einstein, Sidelights on Relativity, New York, Dutton, 1923.
Philipp Frank, Philosophy of Science, op. cit., Ch. 3 and 6.
Adolf Grunbaum, Philosophical Problems of Space and Time, New York, Knopf, 1963. Max Jammer, Concepts of Space, Cambridge, Mass.; Harvard University Press, 1954.
Ernest Nagel, The Structure of Science, op. cit., Ch. 8 and 9.
Henri Poincare, Science and Hypothesis, London, 1905.
Hans Reichenbach, The Philosophy of Space and Time, New York, Dover, 1958.
Значение причинности
Bertrand Russell, Mysticism and Logic, Ch. 9, New York, Longmans, Green 1918. Перепечатано в: Feigl and Brodbeck, Readings in the Philosophy of Science, op. cit.
383
Bertrand Russell, Our Knowledge of the External World, Ch. 8, London, Allen & Unwin, 1914. Перепечатано в: Feigl & Brodbeck, Readings in the Philosophy of Science, op. cit.
Moritz Schlick, Causality in Everyday Life and in Recent Science. Перепечатано в: Feigl and Sellars, Readings in Philosophical Analysis, op. cit.
Детерминизм и свобода воли
Bertrand Russell, Our Knowledge of the External World, op. cit., Ch. 8. Moritz Schlick, Problems of Ethics, Ch. 7, Englewood Cliffs, N. J., Prentice-Hall, 1939.
Charles Stevenson, Ethics and Language, New Haven, Yale University Press, 1944, Ch. 11.