Библиотека    Новые поступления    Словарь    Карта сайтов    Ссылки





назад содержание далее

Часть 1.

Смаллиан Р.М.

Как же называется эта книга?

От переводчика

Что может быть более далеким от истины, чем представление о математике

как о застывшей науке, давно остановившейся а своем развитии и

превратившейся в своего рода свод правил для решения задач? Однако такое

превратное представление об одной из наиболее быстро развивающихся наук

современности бытует у очень многих. Между тем математика непрестанно

меняет свой облик, пополняет свой арсенал новыми идеями, мощными и гибкими

методами, расширяет сферу приложений, черпает новые постановки задач не

только из логики внутреннего развития, но и из других областей науки.

Столь странное противоречие объясняется тем, что между рубежами,

завоеванными современной математикой, и традиционно читаемыми

"устоявшимися" курсами математики существует разрыв, красочно описанный

замечательным представителем этой науки, педагогом и популяризатором Гуго

Штейнгаузом: "В математике несравненно явственней, чем в других

дисциплинах, ощущается, насколько растянуто шествие всего человечества.

Среди наших современников есть люди, чьи познания в математике относятся к

эпохе более древней, чем египетские пирамиды, и они составляют

значительное большинство. Математические познания незначительной части

людей дошли до эпохи средневековья, а уровня математики XVIII века не

достигает и один на тысячу... Но расстояние между теми, кто идет в

авангарде, и необозримой массой путников все возрастает, процессия

растягивается, и идущие впереди отдаляются все более и более. Они

скрываются из виду, их мало кто знает, о них рассказывают удивительнейшие

истории. Находятся и такие, кто просто не верит в их существование".

"Растянутость шествия всего человечества" особенно ощутима, когда речь

заходит не о рецептурной, алгоритмической, а об "идейной" стороне

математики.

С незапамятных времен математические рассуждения считаются

общепризнанным эталоном доказательности, достойным всяческого подражания

(достаточно упомянуть "Этику"

Спинозы, "изложенную на геометрический манер", или "Математические

начала натуральной философии" Ньютона).

Строгость математических доказательств, непреложность получаемых с их

помощью выводов, незыблемость математических истин вошли в поговорку. Но

прописные истины, подобно разменной монете, от частого употребления

стираются и теряют в весе. Доверять им по меньшей мере неосмотрительно, а

получить достоверную информации о действительном положении вещей нелегко

не только для человека далекого от математики, но и для математика, не

занимающегося специально лроблемами оснований математики и математической

логики. Те, кто, желая похвалить обоснованность чьей-либо аргументации, с

легкостью называют ее математически строгой и безупречной, как правило, не

в состоянии объяснить, что означает "доказать", почему доказательство

"доказывает", или ответить, всякое ли утверждение можно доказать или

опровергнуть. Подобные вопросы способны поставить в тупик и несравненно

более искушенного в математике нематематика, который умеет вычислить

значение истинности таких высказываний, как "Речка движется и не

движется", или импликации "Если гром не грянет, то мужик не

перекрестится", знает, чем исключающее "или" (Либо пан, либо пропал)

отличается от неисключающего (Надобно либо уменье, либо везенье а лучше

всего и то, и другое), постиг различие между причинно-следственной связью

и импликацией и усвоил немало других премудростей алгебры логики.

Простота подобных вопросов обманчива, их наивность иллюзорна. Они

затрагивают тонкие и глубокие проблемы теории логического вывода и

оснований математики, над решением которых трудилось не одно поколение

логиков, математиков и философов. При всей общности понимания того, что

составляет существо математического доказательства, и преемственности

поколений каждая эпоха вносит свой вклад в недостижимый идеал

математической строгости, вводя поправки и дополнения в то, что было

сделано ранее.

Предлагаемая вниманию читателя книга американского ученого Рэймонда М.

Смаллиана, известного своими работами в области математической логики,

опровергает известные слова Пифагора о том, что в математику нет царской

дороги. Перед ее читателем открывается редкая, чтобы не сказать

уникальная, возможность проникнуть в существо одного из величайших

достижений математической логики нашего века - в доказательство

знаменитой теоремы Гёделя о неполноте. По занимательности, динамичности и

напряжённости действия книга Смаллиана не уступает лучшим образцам

приключенческого жанра. Намного превосходя по глубине научного содержания

большинство научно-популярных произведений и даже отдельные сугубо научные

издания, книга Смаллиана помогает читателю совершить головокружительное

восхождение от "дурацких штучек" (как автор называет элементарные

логические задачи, не требующие для своего решения ничего, кроме

находчивости, внимания и здравого смысла) к одной из вершин современной

математической логики, на покорение которой обычно приходится затрачивать

немало сил и средств. Попутно автор знакомит читателя со своенравной

Порцией и ее не менее своенравными прапра...

правнучками до N-го колена, проницательным инспектором Крэгом,

искусными мастерами Челлини и Беллини, приглашает побывать на островах,

населенных рыцарями, неизменно говорящими правду, и столь же

неукоснительно лгущими лжецами, побывать в замке графа Дракулы

Задунайского и, пережив множество увлекательных приключений, завершить

необычайное путешествие на гёделевых и дважды гёделевых островах.

С непостижимой ловкостью фокусника (не все ученые коллеги автора знают,

что в годы аспирантуры он выступал в этом качестве на профессиональной

эстраде) Смаллиан демонстрирует новые, порой весьма неожиданные варианты

известных задач, изобретает необычайно изящные головоломки собственной

конструкции, раскрывая перед читателем логику "во всем ее блеске и

великолепии".

Профессор Смаллиан умеет неопровержимо доказать, что либо он, либо

читатель не существует, причем неизвестно, какая из альтернатив истинна!

Чтобы постичь столь высокое искусство доказательства, необходимо

внимательно прочитать его книгу. Поэтому пока мы ограничимся утверждением

(с истинностью которого не может не согласиться даже тот, кто не читал

книги), что книга Смаллиана с неуловимо исчезающим названием "Как же

называется эта книга?" (попробуйте объяснить кому-нибудь, как она

называется, и вы поймете, что имеется в виду) попадет в руки либо

читателю, интересующемуся математикой, либо читателю, для которого

математика не представляет ни малейшего интереса (хотя заранее неизвестно,

какая альтернатива уготована тому или иному экземпляру книги). С неменьшей

уверенностью можно утверждать, что и тот и другой прочитают ее с интересом

и пользой.

Ю. Данилов

От автора

Линде Ветцель и Джозефу Бевандо, чьи мудрые советы были для меня

неоценимы

Я хочу от души поблагодарить...

Прежде всего моих добрых друзей Роберта и Ильзу Коуэн и их десятилетнюю

дочь Ленору, прочитавших рукопись этой книги и высказавших множество

полезных советов. (В частности, Ленора угадала правильный ответ на

ключевой вопрос главы 4:

существует ли Трулюлю в действительности или его выдумал Шалтай-Болтай?)

Выражаю свою искреннюю признательность Григу и Мелвину Фиттингам

(авторам чудесной и полезной книги "Во славу простых вещей") за их интерес

к моей работе и за то, что они обратили на нее внимание Оскара Коллиера из

издательства "Прентис-холл". Думаю, что мне следует особо поблагодарить

Мелвина за то, что он возник в этой книге (опровергнув своим появлением

мое доказательство того, что он никак не мог бы появиться!).

Работать с Оскаром Коллиером и другими сотрудниками издательства

"Прентис-холл" для меня было удовольствием.

Миссис Илене Макгрэт, перепечатавшая рукопись книги, высказала много

полезных советов, которые я с благодарностью принял. Выражаю

признательность Дороти Лахман, весьма изобретательно находившей нужные

детали и оттенки.

Я хотел бы еще раз подчеркнуть роль Джозефа Бевандо и Линды Ветцель,

которым посвящена эта книга. Они были моими преданными и надежными

помощниками на протяжении всей работы над книгой.

Я благодарен моей жене Бланш, помогавшей мне своими вопросами. Надеюсь,

что эта книга поможет ей решить, за кого она вышла замуж: за рыцаря или за

лжеца.

Рэймонд М. Смаллиан

Часть первая. Логические развлечения

I. Одурачен или не одурачен?

1. Остался ли я в дураках?

Мое первое знакомство с логикой произошло, когда мне было шесть лет.

Случилось это 1 апреля 1925 г. В тот день я был болен гриппом, инфлюэнцой

или чем-то еще в этом же роде.

Утром ко мне в спальню заглянул мой брат Эмиль (он на десять лет старше

меня) и сказал: "Рэймонд, сегодня первое апреля, день шуток и розыгрышей,

и я одурачу тебя так, как тебя еще никто не одурачивал!" Весь день я

терпеливо ждал, когда Эмиль меня одурачит, но он так и не появился. Поздно

вечером мама спросила: "Рэймонд, почему ты не спишь?" Я ответил: "Жду,

когда Эмиль меня одурачит". Мама позвала Эмиля и строгим голосом

приказала: "Эмиль, немедленно разыграй малыша! Он ждет, когда ты его

одурачишь". Эмиль послушно направился к моей кроватке, и между нами

произошел следующий диалог.

Эмиль. Ты с утра ждешь, когда я тебя одурачу?

Рэймонд. Жду.

Эмиль. Я никак тебя не одурачиваю. Верно?

Рэймонд. Верно!

Эмиль. Но ведь ты ждал, что я тебя одурачу?

Рэймонд. Ждал.

Эмиль. Вот я тебя и одурачил.

Помнится, в тот день я долго еще ворочался в постели после того, как

мама выключила свет, и ломал голову над тем, оставил меня брат в дураках

или не оставил. С одной стороны, если брат меня не одурачил. то я не

получил того, что мне было обещано, и, следовательно, остался в дураках.

(Так рассуждал мой старший брат.) Но с тем же основанием можно

утверждать, что если брат меня одурачил, то я получил обещанное, и тогда

не понятно, в каком смысле меня следует считать оставшимся в дураках. Как

же все-таки обстоит дело:

одурачил меня брат или не одурачил?

Я не стану сейчас отвечать на этот вопрос. В нашей книге мы еще не раз

вернемся к нему в той или иной форме. В нем воплощен некий тонкий принцип,

который будет одной из главных тем нашей книги.

2. Лгал ли я?

Аналогичный случай произошел со мной много лет спустя, когда я был

аспирантом Чикагского университета. В ту пору я выступал на эстраде как

профессиональный фокусник, но в моих делах произошла небольшая заминка, и

мне необходимо было экстренно изыскать способ, как восполнить убытки. Я

решил попробовать, не подойдет ли мне работа коммивояжера.

Предложив свои услуги компании, занимавшейся торговлей пылесосами, я

получил приглашение явиться для проверки профессиональной пригодности.

Среди прочих мне задали вопрос: "Не возражаете ли вы против того, что вам

время от времени придется немного лгать?" У меня были весьма сильные

возражения. Ложь, исходящую от коммивояжера, я считал особенно

недопустимой, так как она создает превратное представление о продукции.

Однако, подумав про себя, что если я выскажу вслух свое мнение, то

заведомо лишусь работы, я солгал и сказал: "Нет, не имею ничего против".

По дороге домой мне пришло в голову следующее. Я спросил себя, вызывает

ли у меня какие-нибудь возражения данный мной лживый ответ, и сказал

"Нет". А поскольку я не имею ничего против этой конкретной лжи, то,

значит, я не возражаю и против любой лжи. Следовательно, мой ответ "Нет"

при проверке профессиональной пригодности был не ложью, а истиной!

До сих пор мне не вполне ясно, солгал я тогда или не солгал. С помощью

формальной логики мне удалось бы доказать, что я изрек истину, так как

допущение о том, что я лгал, приводит к противоречию. Таким образом,

логика вынуждает меня поверить в то, что я сказал истину. Но в то же время

меня не покидает ощущение, что я солгал!

Коль скоро речь зашла о лжи, я не могу не вспомнить случай, происшедший

с Бертраном Расселлом и философом Дж.Э. Муром.

Расселл отзывался о Муре как об одном из самых правдивых людей, с

которыми ему когда-либо приходилось встречаться.

Однажды Рассел спросил Мура: "Случалось ли вам солгать?"

Мур ответил: "Да!" Комментируя этот краткий диалог, Расселл заметил:

"Думаю, что это была единственная ложь, высказанная Муром!"

Случай, происшедший со мной в молодости, когда я вознамерился было

стать коммивояжером, поднимает вопрос о том, может ли человек лгать, не

зная, что он лжет. Я бы ответил на такой вопрос отрицательно. Я считаю,

что лгать означает высказывать не ложное утверждение, а утверждение,

которое тот, кто его высказывает, считает ложным.

Действительно, если кто-то высказывает утверждение, считая его ложным,

а оно оказывается истинным, то я бы сказал, что этот "кто-то" лжет.

В одном из учебников по аномальной психологии я прочитал о следующем

происшествии. Врачи в психиатрической лечебнице собирались выписать

пациента, страдающего шизофренией, и решили подвергнуть его проверке при

помощи детектора лжи.

Среди прочих пациенту был задан вопрос: "Вы Наполеон?"

Пациент ответил отрицательно. Детектор показал, что он лжет.

Следующий эпизод, также вычитанный мною из какой-то книги,

свидетельствует о том, что иногда животные способны лукавить. В комнате, к

потолку которой на бечевке был подвешен банан, ставился эксперимент на

шимпанзе. Банан висел так высоко, что дотянуться до него было невозможно.

В комнате находились шимпанзе и экспериментатор и, если не считать банана

и бечевки, не было ничего, кроме нескольких деревянных ящиков различных

размеров. Цель эксперимента состояла в том, чтобы установить, сообразит ли

шимпанзе составить из ящиков пирамиду, взобраться на нее и достать банан.

А вот что произошло на деле. Экспериментатор стоял в углу комнаты и

наблюдал за поведением шимпанзе. Обезьяна подошла к нему и стала

настойчиво тянуть за рукав на середину комнаты. Экспериментатор, уступая

нажиму, медленно последовал за шимпанзе. Когда они дошли до середины

комнаты, обезьяна внезапно вспрыгнула ему на плечи и схватила банан.

3. Шутка, обернувшаяся против меня.

У моего товарища по аспирантуре в Чикагском университете было двое

братьев в возрасте шести и восьми лет. Я бывал у них дома и часто

показывал ребятам фокусы. Однажды я пришел и предложил: "Хотите, я покажу

вам необыкновенный фокус?

Превращу вас в львов!" К моему удивлению, один из братьев охотно

согласился. "Вот будет здорово! - сказал он. - Непременно преврати нас

в львов!" Я попытался отговориться: "Пожалуй, этого не следует делать,

потому что превратить вас потом снова в людей было бы невозможно". Младший

брат ответил: "Все равно преврати нас в львов. Ну, пожалуйста!" "Но я же

не смогу вернуть вам человеческий облик!" - пытался выкрутиться я. "Я

хочу, чтобы ты превратил нас в львов!" - заорал в ответ старший брат, а

младший спросил: "А как это делается?"

"При помощи волшебных слов", - ответил я. "А что это за слова?" -

поинтересовался один из братьев. "Чтобы сказать тебе волшебные слова, мне

придется произнести их вслух, и тогда вы превратитесь в львов", -

схитрил я.

Братья задумались, а потом один из них спросил: "А нет ли таких

волшебных слов, которые могли бы превратить нас из львов снова в людей?"

"Есть, - ответил я, - но дело в том, что как только я произнесу первые

волшебные слова, то не только вы, но я все люди на свете, в том числе и я

сам, превратятся в львов. Львы не умеют говорить, и поэтому на целом свете

не останется никого, кто смог бы произнести другие волшебные слова и снова

превратить нас в людей".

Старший брат сказал: "Не можешь сказать, тогда напиши волшебные слова!"

Младший забеспокоился: "Тебе хорошо, а я еще не научился читать!" Я

попытался успокоить его:

"Волшебные слова обладают такой силой, что даже если их молча написать

на клочке бумаги, то все люди на свете все равно превратятся в львов".

Братья разочарованно вздохнули.

Примерно через неделю я встретил восьмилетнего брата, и он остановил

меня: "Привет, Смаллиан! Я как раз хотел задать тебе один вопрос". Не

подозревая подвоха, я спросил: "О чем?" Мальчик ответил: "Как же ты сам

ухитрился узнать волшебные слова?"

II. Головоломки и дурацкие штучки

А. НЕСКОЛЬКО ДОБРЫХ СТАРЫХ ЗНАКОМЫХ

Начнем с нескольких хорошо известных головоломок, служивших

развлечением не одному поколению. Некоторые из них покажутся вам

знакомыми, но даже в них вы обнаружите новые подробности.

4. На чей портрет я смотрю?

Когда я был маленьким, эта головоломка пользовалась необычайной

популярностью. Сейчас она менее известна. Эта головоломка обладает одной

замечательной особенностью:

большинство людей дают неправильный ответ на вопрос задачи, но вопреки

всем аргументам упрямо отстаивают свое решение.

Помню, однажды лет 50 тому назад в одной компании разгорелся

многочасовой спор по поводу этой головоломки, но тем, кто верно решил ее,

так и не удалось убедить остальных в правильности полученного решения. Вот

эта головоломка.

Человек разглядывает портрет. "Чей это портрет вы рассматриваете?" -

спрашивают у него, и человек отвечает: "В семье я рос один, как перст,

один. И все ж отец того, кто на портрете, - сын моего отца (вы не

ослышались, все верно - сын!)". Чей портрет разглядывает человек?

5.

Предположим, что в предыдущей задаче человек, разглядывающий портрет,

ответил на вопрос так: "В семье я рос один; как перст, один. И все же сын

того, кто на портрете, - сын моего отца (вы не ослышались, все верно -

сын!)".

Чей портрет разглядывает этот человек?

6. Что произойдет, если всесокрушающее пушечное ядро попадет в

несокрушимый столб?

Вот еще одна головоломка времен моего детства, которая мне очень

нравится. Под всесокрушающим пушечным ядром мы понимаем ядро, сметающее на

своем пути все, что попадается, а под несокрушимым столбом - столб,

который нельзя ни повалить, ни сломать. Что произойдет, если

всесокрушающее пушечное ядро попадает в несокрушимый столб?

7.

Следующая очень простая задача - одна из многочисленных занимательных

задач, снискавших широкую известность. В темной комнате стоит шкаф, в

ящике которого лежат 24 красных и 24 синих носка. Сколько носков следует

взять из ящика, чтобы из них заведомо можно было составить по крайней мере

одну пару носков одного цвета? (В этой и в следующей задаче речь идет о

наименьшем числе носков.)

8.

Новый поворот в предыдущей задаче. Предположим, что в ящике шкафа лежат

несколько синих и столько же красных носков.

Известно, что минимальное число носков, которые я должен взять из

ящика, чтобы из них заведомо можно было составить по крайней мере одну

пару носков одинакового цвета, совпадает с минимальным числом носков,

которые требуется взять из ящика, чтобы из них можно было составить по

крайней мере одну пару носков разного цвета. Сколько носков в ящике?

9.

Вот многим знакомая логическая задача. Известно, что в Нью-Йорке

жителей больше, чем волос на голове у любого из них, и что среди жителей

Нью-Йорка нет полностью лысых, у которых на голове не осталось бы ни

одного волоса. Следует ли отсюда, что в Нью-Йорке непременно найдутся по

крайней мере два жителя с одинаковым числом волос на голове?

Приведем еще один вариант этой задачи, незначительно отличающийся от

предыдущего. О населении города Поданк известно следующее.

1. Среди жителей Поданка не найдется двух с равным числом волос на

голове.

2. Ни у одного жителя Поданка на голове не растет ровно 518 волос.

3. Жителей в Поданке больше, чем волос на голове любого из них.

Какова наибольшая численность населения Поданка?

10. Кто убийца?

В этой истории речь пойдет о караване, идущем через пустыню Сахару.

Однажды караван остановился на ночлег. Обозначим трех главных действующих

лиц A, B и C. A ненавидел C и решил убить его, подсыпав яду в бурдюк с

питьевой водой (единственным запасом воды, которым располагал C).

Независимо от A другой караванщик B также решил убить C и (не зная, что

принадлежащая тому питьевая вода уже отравлена) проделал в бурдюке

крохотную дырочку, чтобы вода потихоньку вытекала. Через несколько дней C

умер от жажды.

Спрашивается, кто убийца? A или B?

Одни считают убийцей караванщика B, поскольку C все равно не успел

принять яд, подсыпанный его недругом A, и умер бы, даже если бы A не

отравил воду. Другие считают убийцей караванщика A, так как, по их мнению,

действия караванщика B не оказали ни малейшего влияния на исход событий:

коль скоро A отравил воду, C обречен и умер бы, даже если бы другой его

недруг B не проделал дырочку в бурдюке с водой.

Чьи рассуждения правильны?

В связи с нашей задачей я вспомнил анекдот о лесорубе, который в

поисках работы забрел в лагерь лесозаготовителей.

Управляющий встретил его не слишком обнадеживающе. "Не знаю, подойдет

ли тебе работа, - сказал он. - Мы здесь валим лес". Лесоруб

обрадовался: "Эта работа как раз по мне". Управляющий решил испытать его в

деле. "Вот топор, - сказал он. - Посмотрим, сколько времени

потребуется тебе, чтобы свалить вон то дерево". Лесоруб бросился к дереву

и свалил его одним ударом топора. Управляющий был потрясен, но не

сдавался. "Великолепно, - сказал он, - а теперь попробуй повалить вон

то большое дерево".

Лесоруб подошел к огромному дереву и двумя ударами - трах, бах! -

повалил и его. "Невероятно! - воскликнул управляющий. - B жизни не

видал ничего подобного. Вы, конечно, приняты! Но где вы научились так

валить лес?" "Я изрядно попрактиковался и набил руку в лесу Сахары", -

ответил лесоруб. Управляющий на миг задумался. "Вы хотели сказать "в

пустыне Сахаре?" - переспросил он. "Теперь там пустыня", - пояснил

лесоруб.

11. Еще один юридический казус.

Двоих судили за убийство. Присяжные признали одного из обвиняемых

виновным, а другого невиновным. Судья обратился к тому, кто был признан

виновным, и сказал: "Это самое странное дело из всех, которые мне

приходилось разбирать.

Хотя ваша вина вне всяких сомнений установлена, по закону я должен

выпустить вас на свободу".

Как объяснить столь неожиданное заявление судьи?

12. Двое краснокожих.

Двое краснокожих сидели на бревнышке, один повыше ростом, другой

пониже. Тот, кто пониже ростом, доводится сыном тому, кто повыше ростом,

хотя тот, кто повыше ростом, - не его отец.

Как вы это объясните?

13. Часы остановились.

Вот превосходная старинная задача-головоломка. У одного человека не

было наручных часов, но зато дома висели точные настенные часы, которые он

иногда забывал заводить.

Однажды, забыв в очередной раз завести часы, он отправился в гости к

своему другу, провел у того вечер, а вернувшись домой, сумел правильно

поставить часы. Каким образом ему удалось это сделать, если время в пути

заранее известно не было?

14. Задача о медведе.

Эта задача обладает любопытной особенностью: многие слышали ее и знают

ответ, но рассуждения, при которых они пытаются обосновать его, совершенно

неудовлетворительны. Поэтому, даже если вы считаете, что знаете ответ

задачи, проверьте себя, заглянув в решение.

Охотник находится в 100 м к югу от медведя, проходит 100 м на восток,

поворачивается лицом к северу, прицеливается и, выстрелив в направлении на

север, убивает медведя. Какого цвета медвежья шкура?

Б. ДУРАЦКИЕ ШТУЧКИ

Я долго колебался, не зная, как назвать эту книгу. Перебрал множество

названий типа "Занимательная логика", "Логические забавы и развлечения",

но никак не мог выбрать подходящее. Тогда я решил заглянуть в Большой

энциклопедический словарь. Раскрыв его на статье "Развлечения", я

прочитал: "См. Увеселения".

Последовав совету, я почерпнул множество полезнейших сведений о

буффонаде, играх, забавах, занимательных потехах, проказах, развлечениях,

шалостях, шутках, шутовстве и юморе. Я узнал, что можно подшутить над

кем-нибудь, устроить розыгрыш, затеять возню, устроить кутерьму, поднять

пыль столбом, дым коромыслом и что бывают выходки, проделки, ужимки и даже

"дурацкие штучки".

Добравшись до этого выражения, я рассмеялся и сказал жене:

"Знаешь, мне кажется, что "Дурацкие штучки" - великолепное название

для моей книги". Однако, сколь ни выразительным было бы такое название,

оно могло бы создать у читателя неправильное представление о ее содержании

в целом, поскольку многие ее разделы вряд ли подходят под него. Тем не

менее вы вскоре увидите, что название "Дурацкие штучки" как нельзя лучше

подходит для названия этого раздела.

15. Две монеты.

У меня две монеты на общую сумму 15 копеек. Одна из них не пятак. Что

это за монеты?

16.

Этот вопрос обращен к тем читателям, которые знают хоть что-нибудь о

католицизме. Может ли католик жениться на сестре своей вдовы?

17.

Некто живет на двадцать пятом этаже тридцатиэтажного здания. Каждое

утро (кроме субботы и воскресенья) он входит в лифт, спускается вниз и

отправляется на работу.

Вечером, вернувшись домой, он входит в лифт, поднимается на двадцать

четвертый этаж, а оттуда - пешком - еще на один этаж.

Почему он выходит из лифта на двадцать четвертом этаже вместо того,

чтобы подняться прямо на двадцать пятый этаж?

18. Грамматический вопрос.

Если вы любите грамматику, то вас, может быть, заинтересует следующий

вопрос. Как правильно сказать: "не вижу белый желток" или "белого желтка"?

19. Задача о железнодорожном движении.

Поезд отправляется из Бостона в Нью-Йорк. Через час другой поезд

отправляется из Нью-Йорка в Бостон. Оба поезда едут с одной и той же

скоростью. Какой из них в момент встречи будет находиться на меньшем

расстоянии от Бостона?

20. Наклон крыши.

Крыша одного дома не симметрична: один скат ее составляет с

горизонталью угол 60 градусов, другой - угол 70 градусов.

Предположим, что петух откладывает яйцо на гребень крыши. В какую

сторону упадет яйцо - в сторону более пологого или крутого ската?

21. Сколько девяток?

Вдоль улицы стоят 100 домов. Мастера попросили изготовить номера для

всех домов от 1 до 100. Чтобы выполнить заказ, он должен запастись

цифрами. Не пользуясь карандашом и бумагой, подсчитайте в уме, сколько

девяток потребуется мастеру?

22. Беговая дорожка.

Чтобы проползти по беговой дорожке одного стадиона по часовой стрелке,

улитке требуется полтора часа. Когда же улитка ползет по той же дорожке

против часовой стрелки, то полный круг она совершает за 90 мин. Чем

объяснить несовпадение результатов?

23. Вопрос международного права.

Предположим, что на границе между Соединенными Штатами Америки и

Канадой произошла авиационная катастрофа. В какой из двух стран, по вашему

мнению, должны быть похоронены уцелевшие пассажиры?

24. Как вы это объясните?

Некий мистер Смит ехал в машине вместе со своим сыном Артуром. Их

машина попала в катастрофу. Отец погиб на месте, а сын в тяжелом состоянии

доставлен в ближайшую больницу. Взглянув на пострадавшего, дежурный хирург

побледнел и сказал: "Я не могу оперировать его. Ведь это же мой сын Артур!"

Как вы это объясните?

25. И последний вопрос.

И наконец, последний вопрос: как называется эта книга?

РЕШЕНИЯ

4. Удивительно, как много людей дают неверный ответ на вопрос этой

головоломки. Они мысленно ставят себя на место человека, разглядывающего

портрет, и рассуждают следующим образом: "Так как у меня нет ни братьев,

ни сестер, то сыном моего отца могу быть я сам и никто другой.

Следовательно, я смотрю на свой собственный портрет".

Первое утверждение абсолютно правильно: если у меня нет ни братьев, ни

сестер, то сыном моего отца могу быть только я сам. Но отсюда отнюдь не

следует, будто правильный ответ на вопрос задачи гласит: "Самого себя".

Так можно было бы ответить, если бы во второй посылке стояло "и все же

тот, кого мы видим на портрете, - сын моего отца". Но в условии задачи

этого не говорится. Там утверждается, что "отец того, кто на портрете, -

сын моего отца".

Отсюда следует, что отец человека на портрете - я сам (так как я

единственный сын своего отца). Поскольку я отец человека на портрете, то

он должен быть моим сыном.

Следовательно, правильный ответ состоит в том, что человек разглядывает

портрет своего сына.

Если мои рассуждения не убедили скептически настроенного читателя (а я

уверен, что многие из читателей не согласны с моими аргументами!), то их

можно представить в более наглядном виде.

(1) Отец человека на портрете - сын моего отца.

Подставляя краткое "я" вместо более громоздкого выражения "сын моего

отца", преобразуем утверждение (1) к следующему:

(2) Отец человека на портрете - я.

Теперь вы убедились, дорогой читатель?

5. B этом случае человек разглядывает портрет своего отца.

6. При заданных условиях задача логически противоречива:

всесокрушающее пушечное ядро и несокрушимый столб не могут существовать

одновременно. Если бы существовало всесокрушающее пушечное ядро, то оно по

определению сшибало бы на своем пути любой столб. Следовательно, в этом

случае не мог бы существовать несокрушимый столб. Наоборот, если бы

существовал несокрушимый столб, то по определению его не могло бы сбить ни

одно пушечное ядро. Следовательно, в этом случае не могло бы существовать

всесокрушающее пушечное ядро. Таким образом, существование всесокрушающего

пушечного ядра само по себе не приводит к логическому противоречию.

Существование несокрушимого столба само по себе также вполне допустимо. Но

утверждение о том, что всесокрушающее пушечное ядро и несокрушимый столб

существуют одновременно, противоречиво.

По существу деле обстоит так, как если бы я спросил у вас:

"Живут на свете два человека - Джон и Джек. Джон ростом выше Джека, а

Джек выше Джона. Как, по-вашему, это может быть?" Лучший ответ, который вы

могли бы дать в этом случае, гласил бы: "Вы либо лжете, либо ошибаетесь".

7. Обычно на вопрос задачи дают неправильный ответ: 25 носков. Если бы

в задаче спрашивалось, сколько носков следует взять из ящика, чтобы среди

них было по крайней мере. 2 носка различного цвета, то правильный ответ

действительно был бы таким: 25 носков. Но в нашей задаче речь идет о том,

чтобы среди взятых из ящика носков по крайней мере 2 носка были одного

цвета, поэтому правильный ответ задачи иной: 3 носка. Если я возьму из

ящика 3 носка, то они либо все будут одного цвета (и в этом случае я

заведомо смогу выбрать из них по крайней мере 2 носка одного цвета), либо

2 носка будут одного цвета, а третий носок другого, что позволит мне также

составить пару одноцветных носков.

8. В ящике 4 носка.

9. На вопрос первой задачи ответ утвердительный.

Предположим для определенности, что население Нью-Йорка составляет 8

миллионов человек. Если число волос на голове у каждого жителя Нью-Йорка

неповторимо, то это означает, что должно существовать 8 миллионов

различных целых положительных чисел, каждое из которых меньше 8 миллионов,

а это невозможно.

Переходим ко второй задаче. Численность населения Поданка не превышает

518 человек. Действительно, предположим, что в городе Поданк проживает

более 518 человек - например, 520 человек. В этом случае должны были бы

существовать 520 различных целых неотрицательных чисел, отличных от 518 и

меньших 520. Но это невозможно, так как существует ровно 520 целых чисел

(и среди них нуль), каждое из которых меньше 520. Следовательно,

существует лишь 519 чисел, отличных от 518, которые меньше 520.

Заметим, кстати, что один из жителей Поданка должен быть совершенно

лысым. Почему?

10. Не думаю, чтобы рассуждения сторонников любого из двух мнений

относительно того, кто убийца, можно было считать "правильными" или

"неправильными". В проблемах подобного типа, как мне кажется, одно мнение

ничем не хуже и не лучше другого. Лично я считаю, что если кого-нибудь и

обвинять в смерти караванщика C, то его недруга A. Если бы я был

защитником караванщика B, то обратил бы внимание суда на два

обстоятельства: 1) лишить человека отравленной воды не означает убить его;

2) в любом случае действия караванщика B способствовали продлению жизни

караванщика C (хотя это и не входило в намерения караванщика B), поскольку

смерть от отравления наступила бы быстрее, чем смерть от жажды.

Защитник караванщика A мог бы возразить мне: "Как можно, находясь в

здравом уме, обвинять моего подзащитного в отравлении, если C в

действительности не выпил ни капли яда?" Как видите, мы столкнулись с

поистине головоломной проблемой. Дело усложняется тем, что проблему можно

рассматривать с точки зрения морали, права и подходить к ней с чисто

научных позиций, используя такое понятие, как причинность. С точки зрения

морали и A, и B виновны в том, что замышляли убийство, но наказание за

совершенное убийство по строгости не сравнимо с наказанием за преступный

замысел. Правовая оценка этого дела мне не известна. Думаю, что приговоры,

вынесенные различными составами присяжных, не были бы одинаковыми. Что же

касается научного подхода к решению нашей головоломки, то само понятие

причинности затрагивает множество проблем.

Мне кажется, что об этой головоломке можно было бы написать целую книгу.

11. Обвиняемые были сиамскими близнецами.

12. Тот из краснокожих, кто повыше ростом, - мать того, кто ростом

пониже.

13. Выходя из дома, человек заводит часы и запоминает, в каком

положении находятся стрелки. Придя к другу и уходя из гостей, он отмечает

время своего прихода и ухода. Это позволяет ему узнать, сколько он

находился в гостях.

Вернувшись домой и взглянув на часы, человек определяет

продолжительность своего отсутствия. Вычитая из этого времени то время,

которое он провел в гостях, человек узнает время, затраченное на дорогу

туда и обратно.

Прибавив ко времени выхода из гостей половину времени, затраченного на

дорогу, он получает возможность узнать время прихода домой и перевести

соответствующим образом стрелки своих часов.

14. Шкура должна быть белой, так как принадлежит белому медведю,

обитающему в Арктике - вблизи Северного полюса.

Обычно ответ подкрепляют ссылкой на то, что медведь, о котором

говорится в условиях задачи, должен стоять на Северном полюсе. Это лишь

одна, но не единственная возможная ситуация. В каком бы направлении ни

ступить из Северного полюса, двигаться всегда будешь на юг. Поэтому если

медведь находится на Северном полюсе, а охотник - в 100 м к югу от него,

то, пройдя 100 м на восток и обернувшись на север, охотник окажется лицом

к Северному полюсу. Все это так, но, как я уже говорил, приведенное

решение не единственно. Действительно, существует бесконечно много

решений. Например, охотник может находиться на параллели длиной 100 м, а

медведь - в 100 м к северу от него. Пройдя 100 м на восток, охотник

опишет полную окружность вокруг полюса и вернется в исходную точку. Это

второе решение задачи. Но охотник может находиться еще ближе к полюсу на

параллели длиной 50 м.

Пройдя 100 м, он дважды опишет полную окружность вокруг полюса и

окажется в исходной точке. Но и это еще не все.

Охотник может находиться на параллели длиной в 1/3 от 100 м. Трижды

обойдя по параллели вокруг полюса, он также окажется в исходной точке.

Поскольку аналогичное решение можно построить при любом положительном

целом n, то на Земле существует бесконечно много мест, где могла бы

разыграться сценка, описанная в задаче.

Разумеется, во всех этих решениях предполагается, что медведь,

находившийся достаточно близко от Северного полюса, непременно должен быть

белым медведем. Существует, однако, еще одна возможность, хотя она и

весьма маловероятна: некий злонамеренный тип умышленно доставил на

Северный полюс бурого медведя, чтобы "насолить" автору задачи.

15. Пятак и одна монета достоинством в 10 копеек. Одна монета

(десятикопеечная) не пятак.

16. Как может покойник жениться на ком-нибудь?

17. Человек, живущий на двадцать пятом этаже, - лилипут и не может

дотянуться до кнопки "25 этаж" на пульте лифта.

Один мой знакомый (о котором никак нельзя сказать, что он умеет

мастерски рассказывать анекдоты) однажды рассказывал эту задачу-шутку в

компании, где был и я. Начал он свой рассказ так: "В одном доме на

двадцать пятом этаже жил лилипут..."

18. Правильнее было бы сказать, что желток желтый.

19. Поезда в момент встречи будут находиться на одинаковом расстоянии

от Бостона.

20. Петухи не откладывают яйца.

21. Двадцать.

22. Несовпадения нет: полтора часа по продолжительности не отличаются

от 90 минут.

23. Вряд ли стоит хоронить тех, кто уцелел в авиационной катастрофе!

24. Хирург был матерью Артура Смита.

25. К сожалению, я никак не могу припомнить название этой книги, но не

беспокойтесь: рано или поздно я непременно вспомню, как же называется эта

книга.

III. Рыцари и лжецы

А. ОСТРОВ РЫЦАРЕЙ И ЛЖЕЦОВ

Существует множество хитроумных задач об острове, населенном

"рыцарями", всегда говорящими только правду, и лжецами, изрекающими только

ложь. Предполагается, что каждый обитатель острова либо рыцарь, либо лжец.

Мы начнем с одной хорошо известной задачи этого типа, а затем я приведу

серию новых задач, которые придумал сам.

26.

Итак, начнем с давно известной задачи. Трое жителей острова (А, B и C)

разговаривали между собой в саду. Проходивший мимо незнакомец спросил у A:

"Вы рыцарь или лжец?" Тот ответил, но так неразборчиво, что незнакомец не

смог ничего понять. Тогда незнакомец спросил у B: "Что сказал A?" "А

сказал, что он лжец", - ответил B. "Не верьте B! Он лжет! - вмешался в

разговор островитянин C.

Кто из островитян B и C рыцарь и кто лжец?

27.

Когда я впервые встретил предыдущую задачу, мне сразу же бросилось в

глаза, что C по существу бездействует, исполняя роль, своего рода

"бесплатного приложения".

Действительно, когда B высказался, то ложность его утверждения можно

было бы установить и без вмешательства C (см. решение предыдущей задачи).

Следующий вариант задачи позволяет избавиться от "излишеств" в условиях.

Предположим, что незнакомец задал A другой вопрос:

"Сколько рыцарей среди вас?" И на этот вопрос A ответил неразборчиво.

Поэтому незнакомцу пришлось спросить у B:

"Что сказал A?" B ответил: "А сказал, что среди нас один рыцарь". И

тогда C закричал: "Не верьте B! Он лжет!"

Кто из двух персонажей B и C рыцарь и кто лжец?

28.

В этой задаче два персонажа: A и B. Каждый из них либо рыцарь, либо

лжец. A высказывает следующее утверждение:

"По крайней мере один из нас лжец".

Кто из двух персонажей A и B рыцарь и кто лжец?

29.

Предположим, что A говорит: "Или я лжец, или B рыцарь".

Кто из двух персонажей A и B рыцарь и кто лжец?

30.

Предположим, что A говорит: "Или я лжец, или два плюс два - пять". К

какому заключению можно прийти на основании этого утверждения?

31.

Перед нами снова три островитянина A, B и C, о каждом из которых

известно, что он либо рыцарь, либо лжец. Двое из них (А и B) высказывают

следующие утверждения:

A: Мы все лжецы.

B: Один из нас рыцарь.

Кто из трех островитян A, B и C рыцарь и кто лжец?

32.

Предположим, что A и B высказывают следующие утверждения:

A: Мы все лжецы.

B: Ровно один из нас лжец.

Можно ли определить, кто такой B: рыцарь или лжец?

Можно ли определить, кто такой C?

33.

Предположим, что A высказывает утверждение: "Я лжец, а B не лжец".

Кто из островитян A и B рыцарь и кто лжец?

34.

Перед нами в очередной раз три островитянина A, B и C, о каждом из

которых известно, что он либо рыцарь, либо лжец.

Условимся называть двух островитян однотипными, если они оба рыцари или

оба лжецы. Пусть A и B высказывают следующие утверждения:

A: B - лжец.

B: A и C однотипны.

Кто такой C: рыцарь или лжец?

35.

Перед нами снова трое островитян A, B и C. А высказывает утверждение:

"В и C однотипны". Кто-то спрашивает у C:

"А и B однотипны?"

Что ответит островитянин C?

36. Небольшое происшествие.

Эта головоломка необычна. Кроме того, в основу ее положено подлинное

происшествие. Однажды, когда я гостил на острове рыцарей и лжецов, мне

встретились два местных жителя. Я спросил у одного из них: "Кто-нибудь из

вас рыцарь?" Мой вопрос не остался без ответа, и я узнал то, что хотел

узнать.

Кем был островитянин, к которому я обратился с вопросом:

рыцарем или лжецом? Кем был другой островитянин? Смею заверить вас, что

я предоставил в ваше распоряжение информацию, достаточную для решения

задачи.

37.

Предположим, что вы находитесь на острове рыцарей и лжецов и набрели на

двух его обитателей, лениво греющихся на солнце. Вы спрашиваете одного из

них, рыцарь ли его приятель, и получаете ответ (да или нет). Затем вы

задаете такой же вопрос второму островитянину и получаете ответ (да или

нет).

Должны ли оба ответа быть одинаковыми?

38. Эдуард или Эдвин?

На этот раз, прогуливаясь по острову, вы случайно набредете на

островитянина, безнадежно увязшего у берега пруда, но сколько ни бьетесь,

вам так и не удается извлечь его из тины. Вы помните, что его зовут то ли

Эдвин, то ли Эдуард, но не можете вспомнить, как именно. Поэтому вы

спрашиваете у островитянина, как его зовут, и слышите в ответ:

"Эдуард".

Как зовут островитянина?

Б. РЫЦАРИ, ЛЖЕЦЫ И НОРМАЛЬНЫЕ ЛЮДИ

В не менее увлекательном виде задач персонажи делятся на три типа:

рыцарей, говорящих всегда только правду, лжецов, изрекающих только ложь, и

нормальных людей, которые иногда лгут, а иногда говорят правду. Предлагаю

вам несколько придуманных мною задач о рыцарях, лжецах и нормальных людях.

39.

Перед нами трое людей A, B и C. Один из них рыцарь, другой лжец и

третий - нормальный человек (типы людей могут быть перечислены не в том

же порядке, в каком выписаны их "имена" A, B и C). Наши знакомые

высказывают следующие утверждения.

A: Я нормальный человек.

B: Это правда.

C: Я не нормальный человек.

Кто такие A, B и C?

40.

Предлагаю вашему вниманию необычную задачу. Двое людей A и B, о которых

известно, что каждый из них либо рыцарь, либо лжец, либо нормальный

человек, высказывают следующие утверждения:

A: B - рыцарь.

B: A - не рыцарь.

Докажите, что по крайней мере один из них говорит правду, но это не

рыцарь.

41.

На этот раз A и B высказывают следующие утверждения:

A: B - рыцарь.

B: A - лжец.

Докажите, что либо один из них говорит правду, но это не рыцарь, либо

один из них лжет, но это не лжец.

42. Табель о рангах.

На одном острове, где живут рыцари, лжецы и нормальные люди, лжецы

считаются особами низшего ранга, нормальные люди - особами среднего

ранга и рыцари - особами высшего ранга.

Мне очень нравится следующая задача. Двое людей A и B, о каждом из

которых известно, что он либо лжец, либо нормальный человек, высказывают

утверждения:

A: По рангу я ниже, чем B.

B: Не правда!

Можно ли определить ранг A или B? Можно ли установить, истинно или

ложно каждое из этих двух утверждений?

43.

Трое людей A, B и C, о каждом из которых известно, что он либо рыцарь,

либо лжец, либо нормальный человек, высказывают следующие утверждения: A:

B по рангу выше, чем C.

B: C по рангу выше, чем A.

Затем у C спрашивают: "Кто старше по рангу - A или B?"

Что ответит C?

В. ОСТРОВ БАХАВА

На острове Бахава женщины во всем пользуются равными правами с

мужчинами, поэтому женщин, как и мужчин, называют рыцарями, лжецами и

нормальными людьми. В глубокой древности одна из правительниц острова

Бахава по собственной прихоти издала указ, по которому рыцарю разрешалось

вступать в брак только с лжецом, а лжецу - только с рыцарем

(следовательно, нормальный человек мог вступать в брак только с нормальным

человеком). С тех, пор в любой супружеской чете на острове Бахава либо оба

супруга - нормальные люди, либо один из супругов - рыцарь, а другой

- -- лжец.

Следующие три истории происходят на острове Бахава.

44.

Рассмотрим сначала супружескую чету - мистера и миссис A.

Они высказывают следующие утверждения:

Мистер A: Моя жена - не нормальный человек.

Миссис A: Мой муж - не нормальный человек.

Кто такой мистер A и кто такая миссис A - рыцарь, лжец или нормальный

человек?

45.

Предположим, что мистер и миссис A высказали следующие утверждения:

Мистер A: Моя жена - нормальный человек.

Миссис A: Мой муж - нормальный человек.

Совпадает ли ответ этой задачи с ответом предыдущей задачи?

46.

В этой задаче речь пойдет о двух супружеских парах с острова Бахава:

мистере и миссис A, мистере и миссис B. При опросе трое из них дали

следующие показания.

Мистер A: Мистер B - рыцарь.

Миссис A: Мой муж прав: мистер B - рыцарь.

Миссис B: Что верно, то верно. Мой муж действительно рыцарь.

Кто каждый из этих четырех людей - рыцарь, лжец или нормальный

человек и какие из трех высказываний истинны?

РЕШЕНИЯ

26. Ни рыцарь, ни лжец не могут сказать: "Я лжец"

(высказав подобное утверждение, рыцарь солгал бы, а лжец изрек бы

истину). Следовательно, A, кем бы он ни был, не мог сказать о себе, что он

лжец. Поэтому B, утверждая, будто A назвал себя лжецом, заведомо лгал.

Значит, B - лжец. А так как C сказал, что B лгал, когда тот

действительно лгал, то C изрек истину. Следовательно, C - рыцарь. Таким

образом, B - лжец, а C - рыцарь.

(Установить, кем был A, не представляется возможным.)

27. Ответ в этой задаче такой же, как в предыдущей, но ход рассуждений

несколько иной.

Прежде всего заметим, что B и C не могут быть оба рыцарями или оба

лжецами, так как B противоречит C. Следовательно, B и C не могут быть оба

рыцарями или оба лжецами: один из них рыцарь, а другой - лжец. Если бы A

был рыцарем, то всего было бы два рыцаря. Следовательно, A не лгал и

сказал. что среди троих персонажей рыцарь лишь один. С другой стороны,

если бы A был лжецом, то утверждение о том, что из трех островитян A, B и

C рыцарь лишь один, было бы истинным. Но тогда A, будучи лжецом, не мог бы

высказать это истинное утверждение. Следовательно, на вопрос незнакомца A

не мог ответить: "Среди нас один рыцарь". Следовательно, B неверно передал

высказывание A, из чего мы заключаем, что B - лжец, а C - рыцарь.

28. Предположим, что A - лжец. Если бы это было так, то утверждение

"По крайней мере один из нас лжец" было бы ложным (так как лжецы

высказывают ложные утверждения).

Следовательно, в этом случае A и B были бы рыцарями. Таким образом,

если бы A был лжецом, то он не был бы лжецом, что невозможно. Отсюда мы

заключаем, что A не лжец, он рыцарь.

Но тогда высказанное A утверждение должно быть истинным.

Поэтому по крайней мере один из двух персонажей A и B в

действительности лжец. Так как A - рыцарь, то лжецом должен быть B.

Итак, A - рыцарь, а B - лжец.

29. Эта задача может служить неплохим введением в логику дизъюнкции.

Пусть заданы два высказывания p, q.

Высказывание "или p, или q" истинно, если истинно по крайней мере одно

из высказываний p, q (или оба).

Высказывание "или p, или q" ложно, если ложны оба высказывания p, q.

Например, если бы я в хорошую погоду сказал: "Либо дождик, либо снег", то

мое высказывание было бы ложным, потому что ложны обе его части: и та, в

которой говорится о дожде, и та, в которой говорится о снеге.

Именно так принято понимать связку "или" в логике. Именно так мы будем

понимать ее на протяжении всей нашей книги. В повседневной жизни союз

"или" иногда интерпретируют так же, как в логике (то есть допускают

возможность выполнения обеих альтернатив), а иногда понимают в так

называемом "исключительном" смысле (то есть считают, что выполняется одна

и только одна из альтернатив, но не обе). В качестве примера

"исключительного или" при" веду хотя бы такое высказывание: "Я женюсь на

Бетти или на Джейн".

Предполагается, что альтернативы взаимно исключающие, то есть что я не

женюсь на обеих девушках одновременно. С другой стороны, если в учебной

программе колледжа сказано, что студенты первого курса должны либо

прослушать годовой цикл лекций по математике, либо пройти годичный курс

иностранного языка, то вряд ли руководство колледжа станет возражать, если

вы захотите прослушать и то и другое!

Именно в этом - "включительном" - смысле мы и будем использовать

логическую связку "или".

Другое важное свойство дизъюнкции "или... , или" состоит в следующем.

Рассмотрим высказывание p или q" (так мы условимся для краткости

записывать сложное высказывание "или p, или q"). Предположим, что оно

истинно. Тогда если p ложно, то q должно быть истинно (так как по крайней

мере одно из высказываний должно быть истинным, то если p ложно, то q

должно быть истинным). Предположим, что высказывание "Либо дождик, либо

снег" истинно, но неверно, что дождь идет. Тогда должно быть истинно, что

идет снег.

Воспользуемся свойствами дизъюнкции и применим их к решению задачи. A

высказывает сложное утверждение типа дизъюнкции:

"Или я лжец, или B - рыцарь". Предположим, что A - лжец. Тогда

высказанное им утверждение ложно. "Перевести"

это можно так: неверно, что A - лжец и что B - рыцарь.

Таким образом, если бы A был лжецом, то из этого следовало бы, что он

не лжец, то есть мы пришли бы к противоречию:

Отсюда мы заключаем, что A должен быть рыцарем.

Итак, мы установили, что A - рыцарь. Следовательно, его высказывание

о том, что выполняется по крайней мере одна из двух альтернатив (1) A -

лжец, 2) B - рыцарь), истинно. А поскольку первая альтернатива (А -

лжец)

ложна, то должна выполняться вторая альтернатива, то есть B - рыцарь.

Таким образом, установлено, что A и B - оба рыцари.

30. Единственное здравое заключение, к которому можно прийти, состоит в

том, что автор этой задачи не рыцарь.

Действительно, ни рыцарь, ни лжец не могли бы высказать утверждения,

приведенного в задаче. Действительно, предположим, что A - рыцарь. Тогда

высказывание "А - лжец или два плюс два - пять" ложно, так как оба

образующих его высказывания ("А - лжец" и "два плюс два - пять")

ложны. Но это означало бы, что рыцарь A высказал ложное утверждение, что

невозможно. С другой стороны, если бы A был лжецом, то сложное

высказывание "А - лжец или два плюс два - пять" было бы истинным, так

как первое из входящих в него простых высказываний "А - лжец" истинно.

Но тогда лжец A высказал бы истинное утверждение, что также невозможно.

Итак, условия задачи (так же как и условия задачи о всесокрушающем

пушечном ядре и несокрушимом столбе)

противоречивы. Следовательно, я, автор задачи, либо допустил ошибку,

либо солгал. Смею уверить вас, что ошибки я не допускал. Отсюда вы с

полным основанием приходите к выводу, что я не рыцарь.

31. Прежде всего заметим, что A должен быть лжецом.

Действительно, если бы A был рыцарем, то из его высказывания следовало

бы, что все трое лжецы. Но тогда A (по предположению, рыцарь) оказался бы

лжецом, что невозможно. Следовательно, A - лжец. Но тогда его

высказывание ложно и по крайней мере один из трех островитян A, B и C -

рыцарь.

Предположим теперь, что B - лжец. Тогда A и B - оба лжецы, поэтому

C должен быть рыцарем (так как по крайней мере один из трех островитян

рыцарь). Это означает, что ровно один из трех островитян рыцарь, и,

следовательно, высказывание B истинно, но это невозможно, так как любое

высказывание лжеца не истинно. Отсюда мы заключаем, что B должен быть

рыцарем.

Итак, мы установили, что A - лжец, а B - рыцарь. Так как B -

рыцарь, то его высказывание истинно, поэтому ровно один из трех островитян

- рыцарь. Им должен быть B, следовательно, C должен быть лжецом. Итак, A

- -- лжец, B - рыцарь и C - лжец.

32. Определить, кто такой B, мы не в силах, но можно доказать, что C

- -- рыцарь.

По тем же причинам, что и в предыдущей задаче, A должен быть лжецом.

Следовательно, по крайней мере один из островитян B и C должен быть

рыцарем. Выясним, кто такой B, Он может быть либо рыцарем, либо лжецом.

Предположим, что он рыцарь. Тогда его высказывание о том, что только один

из островитян A и B - лжец, истинно. Единственным лжецом должен быть A,

поэтому C может быть только рыцарем. Таким образом, если B - рыцарь, то

и C - рыцарь. С другой стороны, если B - лжец, то C должен быть

рыцарем, так как все трое островитян, как мы уже знаем, не могут быть

рыцарями. Следовательно, C должен быть рыцарем в любом случае.

33. Прежде всего заметим, что A не может быть рыцарем.

Действительно, если бы A был рыцарем, то его высказывание было бы

истинным, а в нем утверждается, что A - лжец.

Следовательно, A - лжец, и его высказывание ложно. Если бы B был

рыцарем, то высказывание A было бы истинным.

Следовательно, B также лжец. Итак, A и B - лжецы.

34. Предположим, что A - рыцарь. Тогда его высказывание о том, что B

- лжец, должно быть истинным, в силу чего B должен быть лжецом. Но тогда

высказывание B о том, что A и C однотипны, ложно, поэтому A и C не

однотипны.

Следовательно, C - лжец (так как A - рыцарь). Таким образом, если A

- -- рыцарь, то C - лжец.

С другой стороны, предположим, что A - лжец. Тогда его высказывание о

том, что B - лжец, ложно, в силу чего B - рыцарь. Следовательно,

высказывание B о том, что A и C однотипны, истинно. Отсюда мы заключаем,

что C - рыцарь (так как A - рыцарь).

Итак, мы доказали, что независимо от того, кто такой A - рыцарь или

лжец, C должен быть лжецом. Следовательно, C - лжец.

35. Для решения этой задачи необходимо рассмотреть отдельно два случая.

Первый случай: A - рыцарь. Тогда B и C однотипны. Если C - рыцарь,

то и B - рыцарь и, следовательно, однотипен с A. Поэтому C, будучи

человеком правдивым, должен был ответить "Да". Если C - лжец, то и B -

лжец (поскольку B однотипен с C) и, следовательно, принадлежит к иному

типу островитян, чем A. Поэтому C, будучи лжецом, должен солгать и

ответить "да".

Второй случай: A - лжец. Тогда B и C не однотипны. Если C - рыцарь,

то B - лжец и, следовательно, однотипен с A. Поэтому C, будучи рыцарем,

должен ответить "да". Если C - лжец, то B, будучи человеком иного типа,

чем C, - рыцарь и принадлежит к иному типу островитян, чем A. Но тогда

C, будучи лжецом и утверждая, что A и C не однотипны, должен лгать,

поэтому на заданный вопрос он ответит "да".

Таким образом, в обоих случаях C ответит "да".

36. Решить эту задачу вам поможет информация, приведенная в условиях

задачи после сообщения о том, что островитянин дал ответ на мой вопрос:

мое замечание о том, что после его ответа я узнал истинный ответ на свой

вопрос.

Предположим, что островитянин, с которым я разговаривал (обозначим его

A), ответил на мой вопрос "да". Мог бы я после такого ответа знать, что по

крайней мере один из встретившихся мне островитян рыцарь? Разумеется, нет.

Действительно, A мог оказаться рыцарем и на мой вопрос правдиво

ответить "да" (его ответ соответствовал бы истине, поскольку по крайней

мере один островитянин, а именно A - рыцарь). Оба островитянина могли

оказаться лжецами. В этом случае A, солгав, ответил бы на мой вопрос "да"

(что было бы ложью, так как ни один из островитян не был рыцарем). Таким

образом, получив от A ответ "да", я не смог бы узнать истинный ответ на

свой вопрос. Но, как говорится в условиях задачи, после ответа A мне стал

известен правильный ответ на заданный мною вопрос.

Следовательно, A мог ответить только "нет".

Разберемся теперь, кто такие островитянин A и его приятель, которого мы

обозначим B. Если бы A был рыцарем, то он не мог бы дать правдивый ответ

"нет", поэтому A - лжец.

Так как его отрицательный ответ ложен, то по крайней мере один из двух

островитян должен быть рыцарем. Следовательно, A - лжец, а B - рыцарь.

37. Должны. Если оба встретившихся вам островитянина рыцари, то они оба

ответят "да". Если они оба лжецы, то они также оба ответят "да". Если же

один из них рыцарь, а другой лжец, то рыцарь ответит "нет" и лжец также

ответит "нет".

38. Должен признаться, что в этой задаче я позволил себе подшутить над

читателем. Ключом к решению служит та фраза, в которой говорится, что вам,

сколько вы ни бились, так и не удалось "извлечь его из тины". Слова,

заключенные в кавычки, представляют собой каламбур - "извлечь его

истины". Из них следует, что встретившийся вам островитянин изрекал только

ложь, то есть был лжецом.

Отсюда мы заключаем, что его звали Эдвин.

39. Прежде всего заметим, что A не может быть рыцарем, потому что

рыцарь не назвал бы себя нормальным человеком.

Следовательно, A - либо лжец, либо нормальный человек.

Тогда истинно высказывание островитянина B. Значит, B - либо рыцарь,

либо нормальный человек. Но B не может быть нормальным человеком (так как

A - нормальный человек), поэтому B - рыцарь, а C - лжец. Но лжец не

может сказать о себе, что он не нормальный человек (так как любой лжец -

не нормальный человек), и мы приходим к противоречию. Итак, A не может

быть нормальным человеком.

Следовательно, A - лжец. Это означает, что высказывание островитянина

B ложно, в силу чего B должен быть нормальным человеком (лжецом он быть не

может, так как лжец - островитянин A). Итак, A - лжец, а B -

нормальный человек. Отсюда мы заключаем, что C - рыцарь.

40. Эта задача обладает интересной особенностью. Условия ее не

позволяют установить, кто из двух островитян говорит правду, не будучи

рыцарем: A или B. Мы можем доказать более слабое утверждение: по крайней

мере один из двух островитян A и B говорит правду, не будучи рыцарем.

Островитянин A либо говорит правду, либо не говорит правду.

Докажем два утверждения: 1) если A говорит правду, то он говорит

правду, не будучи рыцарем; 2) если A лжет, то B говорит правду, не будучи

рыцарем.

1) Предположим, что A говорит правду. Тогда B - рыцарь и,

следовательно, говорит правду. Значит, A - не рыцарь.

Таким образом, если A говорит правду, то A - лицо, говорящее правду,

не будучи рыцарем.

назад содержание далее



ПОИСК:




© FILOSOF.HISTORIC.RU 2001–2023
Все права на тексты книг принадлежат их авторам!

При копировании страниц проекта обязательно ставить ссылку:
'Электронная библиотека по философии - http://filosof.historic.ru'