Библиотека    Новые поступления    Словарь    Карта сайтов    Ссылки






назад содержание далее

Часть 2.

Ч. СТИВЕНС

Нейрон

Это отдельная нервная клетка, строительный блок мозга. Она передает нервные импульсы по единственному длинному волокну (аксону) и получает их по многочисленным коротким волокнам (дендритам)

Нейроны, или нервные клетки, являются строительными блоками мозга. Хотя они имеют те же самые гены, то же самое общее строение и тот же самый биохимический аппарат, что и другие клетки, они обладают и уникальными особенностями, которые делают функцию мозга совершенно отличной от функции, скажем печени. Важными особенностями нейронов являются характерная форма, способность наружной мембраны генерировать нервные импульсы и наличие уникальной структуры, синапса, служащего для передачи информации от одного нейрона другому.

Нейрон зрительной коры кошки, представленный на микрофотографии, был окрашен путем инъекции фермента - пероксидазы хрена. Тела нейронов, образующие фон, докрашены фуксином. Все волокна, отходящие от тела клетки, являются дендритами, получающими информацию от других нейронов. Передающее информацию волокно, аксон, намного тоньше и его нелегко увидеть при таком увеличении. Самое толстое волокно, направленное вертикально вверх, называют апикальным дендритом; в данный срез попала лишь небольшая его часть. При данном увеличении полная длина апикального дендрита должна составлять около 75 см. (Его ход можно проследить по соседним срезам.) При регистрации активности этой клетки у живой кошки обнаружено, что она реагирует на границу светлое-темное, идущую под углом 60° к вертикали. Благодаря его форме этот нейрон называют пирамидной клеткой. Это один из двух наиболее многочисленных типов нейронов в коре млекопитающих. Микрофотография получена Ч. Джильбертом и Т. Визелем из Гарвардской медицинской школы.

Полагают, что мозг человека состоит из 1011 нейронов: это приблизительно столько же, сколько звезд в нашей Галактике. Не найдется и двух нейронов, одинаковых по виду. Несмотря на это, их формы обычно укладываются в небольшое число широких категорий, и большинству нейронов присущи определенные структурные особенности, позволяющие выделить три области клетки: клеточное тело, дендриты и аксон. Тело содержит ядро и биохимический аппарат синтеза ферментов и других молекул, необходимых для жизнедеятельности клетки. Обычно тело нейрона имеет приблизительно сферическую или пирамидальную форму. Дендриты представляют собой тонкие трубчатые выросты, которые многократно делятся и образуют ветвистое дерево вокруг тела клетки. Они создают ту основную физическую поверхность, на которую поступают идущие к данному нейрону сигналы. Аксон тянется далеко от тела клетки и служит той линией связи, по которой сигналы, генерируемые в теле данной клетки, могут передаваться на большие расстояния в другие части мозга и остальной нервной системы. Аксон отличается от дендритов как по строению, так и по свойствам своей наружной мембраны. Большинство аксонов длиннее и тоньше дендритов и имеет отличный от них характер ветвления: если отростки дендритов в основном группируются вокруг клеточного тела, то отростки аксонов располагаются на конце волокна, в том месте, где аксон взаимодействует с другими нейронами.

Функционирование мозга связано с движением потоков информации по сложным цепям, состоящим из нейронных сетей. Информация передается от одной клетки к другой в специализированных местах контакта - синапсах. Типичный нейрон может иметь от 1000 до 10000 синапсов и получать информацию от 1000 других нейронов. Хотя в своем большинстве синапсы образуются между аксонами одной клетки и дендритами другой, существуют и иные типы синаптических контактов: между аксоном и аксоном, между дендритом и дендритом и между аксоном телом клетки.

Типичный нейрон позвоночного способен передавать нервные импульсы на значительные расстояния. У изображенного здесь нейрона все части увеличены пропорционально. Импульсы возникают в теле клетки и распространяются вдоль аксона, который имеет одну или несколько ветвей. Этот аксон, который для удобства изображен в виде гармошки, в действительности имеет в длину 1 см. Бывают аксоны длиной более 1 м. Конечные ветви аксона образуют синапсы более чем на 1000 других нейронов. Большинство синапсов связывает аксонные окончания одного нейрона с дендритами, образующими «дерево» вокруг клеточного тела другого нейрона. Таким образом, дендриты, окружающие нейрон на этой схеме, могли бы получать входные сигналы от десятков, сотен и даже тысяч других нейронов. Многие аксоны, такие, как этот, снабжены изолирующей миелиновой оболочкой, прерывающейся через определенные интервалы участками, называемыми перехватами Ранвье.

Тело нейрона содержит общий для всех клеток генетический материал и сложный метаболический аппарат. Однако в отличие от большинства других клеток нейроны после завершения эмбрионального периода не делятся; исходный их запас должен служить в течение всей жизни организма. От тела клетки отходит несколько дендритов и один аксон. Тело клетки и дендриты покрыты синапсами - бляшкообразными структурами, через которые поступает информация от других нейронов. Митохондрии снабжают клетку энергией. Белки синтезируются на эндоплазматическом ретикулуме. Транспортная система перемещает белки и другие вещества от тела клетки к тем местам, где они требуются.

В области синапса аксон обычно расширяется, образуя на конце пре-синаптическую бляшку, которая является передающей информацию поверхностью контакта. Концевая бляшка содержит мелкие сферические образования, называемые синаптическими пузырьками, каждый из которых содержит несколько тысяч молекул химического медиатора. По прибытии в пресинаптическое окончание нервного импульса некоторые из пузырьков выбрасывают свое содержимое в узкую щель, отделяющую бляшку от мембраны дендрита другой клетки, предназначенного для приема таких химических сигналов. Таким образом, информация передается от одного нейрона другому с помощью некоторого посредника, или медиатора. Импульсация нейрона отражает активацию воздействующими нейронами сотен синапсов. Некоторые синапсы являются возбуждающими, т. е. они способствуют генерации импульсов, тогда как другие - тормозные - способны аннулировать действие сигналов, которые в их отсутствие могли бы возбудить разряд нейрона.

Синапс - это место переключения, в котором происходит передача информации от одного нейрона к другому с помощью химических медиаторов. Синапс состоит из двух частей: бляшкообразного утолщения, принадлежащего окончанию аксона, и рецепторной области на поверхности другого нейрона. Мембраны разделены синаптической щелью шириной около 200 нм. Молекулы химического медиатора, запасенные в пузырьках аксонного окончания, выделяются в щель под действием приходящих нервных импульсов. Медиатор изменяет электрическое состояние воспринимающего нейрона, увеличивая или уменьшая вероятность генерации этим нейроном импульса.

Хотя нейроны и являются строительными блоками мозга, это не единственные клетки, которые в нем имеются. Так, кислород и питательные вещества поставляются плотной сетью кровеносных сосудов. Существует потребность и в соединительной ткани, особенно на поверхности мозга. Один из важных классов клеток центральной нервной системы составляют глиальные клетки, или глия. Глия занимает в нервной системе практически все пространство, которое не занято самими нейронами. Хотя функция глии пока не вполне изучена, по-видимому, она обеспечивает структурную и метаболическую опору для сети нейронов.

Синаптическое окончание занимает большую часть этой электронно-микроскопической фотографии, полученной Дж. Хойзером из Университета калифорнийской медицинской школы в Сан-Франциско и Т. Ризом из Национальных институтов здравоохранения. Щель, отделяющая пресинаптическую мембрану от постсинаптической, проходит вдоль нижней части фотографии. Крупные, темные структуры - это митохондрии; многочисленные округлые тела - пузырьки, содержащие медиатор; расплывчатые темные участки, расположенные вдоль щели, предположительно являются основными местами выделения медиатора.

Еще одним типом клеток, повсеместно встречающихся в нервной системе, являются шванновские клетки. Оказывается, все аксоны заключены в оболочку из шванновских клеток. В некоторых случаях шванновские клетки просто окутывают аксон тонким слоем. Во многих же случаях в ходе эмбриогенеза шванновская клетка закручивается вокруг аксона, образуя несколько плотных слоев изоляции, называемой миелином. Миелиновая оболочка прерывается примерно через каждый миллиметр по длине аксона узкими щелями - так называемыми перехватами Ранвье. В аксонах, имеющих оболочку такого типа, распространение нервного импульса происходит путем его перескакивания от перехвата к перехвату, где внеклеточная жидкость оказывается в непосредственном контакте с клеточной мембраной. Эволюционный смысл миелиновой оболочки, по-видимому, состоит в экономии метаболической энергии нейрона. Как правило, миелинизированные нервные волокна проводят нервные импульсы быстрее, чем немиелинизированные.

Нейроны способны выполнять свою функцию только благодаря тому, что их наружная мембрана обладает особыми свойствами. Мембрана аксона по всей его длине специализирована для проведения электрического импульса. Мембрана аксонных окончаний способна выделять медиатор, а мембрана дендритов реагирует на медиатор. Кроме того, мембрана обеспечивает узнавание других клеток в процессе эмбрионального развития, так что каждая клетка отыскивает предназначенное ей место в сети, состоящей из 1011 клеток. В связи с этим многие современные исследования сосредоточены на изучении всех тех свойств мембраны, которые ответственны за нервный импульс, за синаптическую передачу, за узнавание клеток и за установление контактов между клетками.

Мембрана нейрона, как и наружная мембрана любой клетки, имеет в толщину около 5 нм и состоит из двух слоев липидных молекул, упорядоченных таким образом, что их гидрофильные концы обращены в сторону водной фазы, находящейся внутри и снаружи клетки, а гидрофобные концы повернуты в сторону от водной фазы и образуют внутреннюю часть мембраны. Липидная часть мембраны приблизительно одинакова у клеток всех типов. Что делает одну мембрану отличной от другой, так это специфические белки, которые связаны с мембраной тем или иным способом. Белки, которые фактически встроены в двойной липидный слой, называются внутренними белками. Другие белки, периферические мембранные белки прикреплены к мембранной поверхности, но не являются неотъемлемой частью ее структуры. В связи с тем, что мембранные липиды - жидкости, даже внутренние белки часто могут свободно перемещаться с места на место путем диффузии. Однако в некоторых случаях белки жестко закрепляются с помощью вспомогательных структур.

Мембранные белки всех клеток распадаются на пять классов: насосы, каналы, рецепторы, ферменты и структурные белки. Насосы расходуют метаболическую энергию для перемещения ионов и молекул против концентрационных градиентов и поддерживают необходимые концентрации этих молекул в клетке. Поскольку заряженные молекулы не могут пройти через сам двойной липидный слой, клетки приобрели в процессе эволюции белковые каналы, обеспечивающие избирательные пути для диффузии специфических ионов. Клеточные мембраны должны узнавать и прикреплять многие типы молекул. Эти функции выполняют рецепторные белки, которые представляют собой центры связывания, обладающие высокой специфичностью и сродством. Ферменты размещаются внутри мембраны или на ней, чем облегчается протекание химических реакций у мембранной поверхности. Наконец, структурные белки обеспечивают соединение клеток в органы и поддержание субклеточной структуры. Эти пять классов мембранных белков не обязательно взаимно исключают друг друга. Так, например, тот или иной белок может быть одновременно и рецептором, и ферментом, и насосом. Мембранные белки - это ключ к пониманию функций нейрона, а следовательно, и функций мозга. Поскольку они занимают такое центральное место в современных представлениях о нейроне, я сконцентрирую свое обсуждение вокруг описания ионного насоса, различных типов каналов и ряда других белков, которые в совокупности наделяют нейроны их уникальными свойствами. Общая идея состоит в том, чтобы суммировать важные характеристики мембранных белков и показать, как эти характеристики определяют нервный импульс и другие сложные особенности функций нейрона.

Подобно всем другим клеткам нейрон способен поддерживать постоянство своей внутренней среды, заметно отличающейся по составу от окружающей его жидкости. Особенно поразительны различия в концентрациях ионов натрия и калия. Наружная среда приблизительно в 10 раз богаче натрием, чем внутренняя, а внутренняя среда примерно в 10 раз богаче калием, чем наружная. Как калий, так и натрий способны проникать через поры в клеточной мембране, поэтому некоторый насос должен непрерывно производить обмен вошедших в клетку ионов натрия на ионы калия из наружной среды. Такое выкачивание натрия осуществляется внутренним мембранным белком, называемым Na-K-аденозинтрифосфатазным насосом, или, как его чаще называют, натриевым насосом.

Белковая молекула натриевого насоса (или комплекс белковых субъединиц) имеет молекулярный вес около 275000 и размеры порядка 6x8 нанометров, что несколько больше толщины клеточной мембраны. Каждый натриевый насос может использовать энергию, запасенную в форме фосфатной связи в аденозинтрифосфате (АТФ), для того, чтобы обменять три иона натрия внутренней среды клетки на два иона калия наружной среды. Работая с максимальной скоростью, каждый насос способен транспортировать через мембрану около 200 ионов натрия и 130 ионов калия в секунду. Однако фактическая скорость регулируется в соответствии с потребностями клетки. У большинства нейронов имеется от 100 до 200 натриевых насосов на квадратный микрон мембранной поверхности, но в некоторых участках этой поверхности их плотность почти в 10 раз выше. Типичный мелкий нейрон имеет, по-видимому порядка миллиона натриевых насосов, способных перемещать около 200 миллионов ионов натрия в секунду. Именно трансмембранные градиенты натрия и калия обеспечивают возможность проведения по нейрону нервного импульса.

Мембрана аксона разделяет жидкости, сильно отличающиеся по содержанию ионов натрия (цветные кружки) и ионов калия (черные кружки). Наружная среда приблизительно в 10 раз богаче ионами натрия, чем калия; во внутриклеточной среде соотношение ионов обратное. Мембрана пронизана белками, которые действуют как избирательные каналы, предпочтительно пропускающие либо ионы натрия, либо ионы калия. В состоянии покоя, когда импульсы не передаются, каналы обоих типов закрыты, и ионный нанос поддерживает ионные градиенты, выкачивая ионы натрия в обмен на ионы калия. Внутренность аксона в норме имеет отрицательный потенциал в 70 мВ по отношению к наружному раствору. Если эта разность потенциалов уменьшается вследствие прихода нервного импульса, натриевый канал открывается и позволяет ионам натрия входить внутрь аксона. Мгновением позже натриевый канал закрывается, а открывается калиевый, позволяя ионам калия выходить из клетки. Последовательное открывание и закрывание каналов двух типов приводит к распространению нервного импульса; этот процесс представлен на следующей иллюстрации.

Мембранные белки, которые служат каналами, существенны для многих сторон деятельности нейрона и в особенности для генерации нервного импульса и синаптической передачи. Чтобы представить значение каналов для электрической активности мозга, я коротко опишу механизм нервного импульса, а затем опять вернусь к более систематическому описанию свойств каналов.

Поскольку концентрации ионов натрия и калия по ту и другую сторону мембраны различаются, внутренность аксона имеет отрицательный потенциал примерно в 70 мВ по отношению к наружной среде. Четверть века тому назад в своих классических работах по изучению передачи нервного импульса вдоль гигантского аксона кальмара английские исследователи А. Ходжкин, А. Хаксли и Б. Катц показали, что распространение нервного импульса сопровождается резкими изменениями проницаемости мембраны аксона для ионов натрия и калия. Когда нервный импульс возникает в основании аксона (в большинстве случаев он генерируется клеточным телом в ответ на активацию дендритных синапсов), трансмембранная разность потенциалов в этом месте локально понижается. Непосредственно впереди области с измененным потенциалом (по направлению распространения нервного импульса) открываются мембранные каналы, пропускающие в клетку ионы натрия.

Распространение нервного импульса по аксону сопряжено с появлением локальных потоков ионов натрия (Na + ) внутрь, сменяемых потоками ионов калия (К+) наружу через каналы, которые регулируются изменениями напряжения на мембране аксона. Электрический процесс, приводящий к распространению нервного импульса вдоль аксона, обычно развивается в клеточном теле. Генерация импульса начинается со слабой деполяризации, или уменьшения отрицательного потенциала внутренней поверхности мембраны, в том месте, где аксон отходит от клеточного тела. Этот небольшой сдвиг потенциала открывает некоторые из натриевых каналов, вызывая тем самым дальнейшее уменьшение потенциала.

Поток ионов натрия внутрь будет ускоряться до тех пор, пока внутренняя поверхность мембраны не станет локально положительной. Изменение знака потенциала приведет к закрыванию натриевых каналов и открыванию калиевых. Поток ионов калия наружу быстро восстановит отрицательный потенциал. Кратковременная реверсия потенциала, получившая название потенциала действия, сама распространяется по аксону (1, 2). После короткого рефрактерного периода за первым импульсом может следовать второй (3). Скорость распространения нервного импульса на схеме соответствует таковой в гигантском аксоне кальмара.

Этот процесс является самоусиливающимся: поток ионов натрия через мембрану способствует открыванию большего числа каналов и облегчает другим ионам возможность следовать за ними. Проникшие в клетку ионы натрия изменяют отрицательный внутренний потенциал мембраны на положительный. Вскоре после открывания натриевые каналы закрываются, но теперь открывается другая группа каналов, которая позволяет ионам калия выходить наружу. Этот поток восстанавливает потенциал внутри аксона до величины его потенциала покоя, т.е. до -70 мВ. Резкий скачок потенциала сначала в положительную, а затем в отрицательную сторону, который выглядит на экране осциллографа как пик («спайк»), известен под названием потенциала действия и является электрическим выражением нервного импульса. Волна изменения потенциала стремительно проносится по аксону до самого его конца во многом подобно тому, как бежит пламя по бикфордову шнуру.

Это краткое описание нервного импульса иллюстрирует важность каналов для электрической активности нейронов и подчеркивает два фундаментальных свойства каналов: избирательность и наличие воротных механизмов. Каналы проницаемы избирательно, и степень избирательности варьирует в широких пределах. Так, каналы одного типа позволяют проходить ионам натрия, но сильно препятствуют прохождению ионов калия, тогда как каналы другого типа делают обратное. Однако избирательность редко бывает абсолютной. Канал одного типа, который практически не обладает избирательностью, позволяет проходить примерно 85 ионам натрия на каждые 100 ионов калия; другой канал, с большей избирательностью, пропускает только около 7 ионов натрия на каждые 100 ионов калия. Канал первого типа, известный как активируемый ацетилхолином, имеет пору диаметром около 0,8 нм, которая заполнена водой. У канала второго типа, известного как калиевый канал, пора значительно меньше и содержит меньше воды.

Ион натрия приблизительно на 30% меньше иона калия. Точная молекулярная структура, позволяющая более крупным ионам проходить через клеточную мембрану легче, чем более мелким, неизвестна. Однако общие принципы, лежащие в основе такой дискриминации, понятны. Они включают взаимодействия между ионами и участками канальной структуры, сочетающиеся со специфическим упорядочением молекул воды внутри поры.

Активируемые ацетилхолином каналы плотно упакованы в постсинаптической мембране клетки электрического органа ската - рыбы, которая может наносить электрический удар. На этой микрофотографии показана покрытая платиной реплика мембраны, которая была заморожена и вытравлена. Размеры частиц платины не позволяют разрешать детали мельче 2 нм. Согласно последним данным, белковая молекула канала, размеры которой составляют 8,5 нм в поперечнике, состоит из пяти субъединиц, окружающих канал, наименьший размер которого составляет 0,8 нм. Микрофотография получена Хойзером и С. Салпетером (Heuser, S. Salpeter).

Ответ одиночного мембранного канала на медиатор ацетилхолин был зарегистрирован с помощью созданного недавно метода, который применили Э. Нехер и Дж. Стейнбах (медицинский факультет Йельского университета). Активируемые ацетилхолином каналы, имеющиеся в постсинаптических мембранах, пропускают приблизительно равные количества ионов натрия и калия. На записи показан ток через одиночный канал постсинаптической мембраны мышцы лягушки, возникающий при активации этого канала субэрилдихолином - веществом, имитирующим действие ацетилхолина, но открывающим каналы на более длительное время. Эксперимент показал, что процесс открывания каналов подчиняется закону «все или ничего» и время их пребывания в открытом состоянии варьирует случайным образом.

Натриевые каналы аксона также работают по принципу «все или ничего» и при этом независимо друг от друга, что было установлено исследованиями, проведенными Ф. Сигуорсом (медицинский факультет Йельского университета). В немиелинизированной области мембраны аксона, названной перехватом Ранвье, во время распространения нервного импульса обычно открывается около 10000 каналов, I-изменения проницаемости для натрия во времени; II-получена при 12-кратном усилении по сравнению с верхней; показаны флуктуации проницаемости вокруг среднего значения, обусловленные вероятностным характером процессов открывания и закрывания каналов.

Развитие нервных импульсов в телах нейронов требует координированного открывания и закрывания каналов пяти типов, пропускающих разные виды ионов (натрия, калия или кальция). Вклад различных каналов в нервный импульс можно оценить, решая систему нелинейных дифференциальных уравнений. А. Зависимость от времени фактически зарегистрированных (I) и вычисленных на основании уравнений (II) изменений потенциала внутри тела нейрона. Б. Изменения во времени всех токов, протекающих через основные типы каналов. Для возникновения серии нервных импульсов необходимо сложное взаимодействие каналов разных типов. Исследования, на основании которых построены данные кривые, были проведены Дж. Коннором в Иллинойском университете и автором статьи на медицинском факультете Йельского университета.

Воротные механизмы, регулирующие открывание и закрывание мембранных каналов, представлены двумя основными типами. Канал одного типа, упоминавшийся выше при описании нервного импульса, открывается и закрывается в ответ на изменения потенциала клеточной мембраны, поэтому говорят, что он управляется электрически. Второй тип каналов управляется химически. Такие каналы реагируют лишь слабо, если вообще реагируют, на изменения потенциала, но открываются, когда особая молекула - медиатор - связывается с некоторой рецептор ной областью на белке канала. Химически управляемые каналы обнаружены в рецептивной мембране синапсов: они ответственны за перевод химических сигналов, посылаемых окончаниями аксона в процессе синаптической передачи, в изменения ионной проницаемости. Химически управляемые каналы обычно именуют в соответствии с их специфическим медиатором. Так, например, говорят об АХ-активируемых каналах или о ГАМК-активируемых каналах (АХ - ацетилхолин, ГАМК - гамма-аминомасляная кислота). Электрически управляемые каналы принято называть по иону, наиболее легко проходящему через данный канал.

Функционируя, белки обычно изменяют свою форму. Такие изменения формы, называемые конформационными, особенно ярко выражены у сократимых белков, ответственных за движение клеток, но они не менее важны и для многих ферментов и других белков. Конформационные изменения канальных белков составляют основу воротных механизмов, поскольку они обеспечивают открывание и закрывание канала за счет малых перемещений частей молекулы, расположенных в критическом месте и позволяющих блокировать или освобождать пору.

Когда электрически или химически управляемые каналы открываются и пропускают ионы, возникает электрический ток, который можно измерить. Совсем недавно в нескольких случаях удалось зарегистрировать ток, проходящий через одиночный канал, так что его открывание и закрывание можно было исследовать непосредственно. Обнаружилось, что время, на протяжении которого канал остается открытым, варьирует случайным образом, так как открывание и закрывание канала есть результат некоторых конформационных изменений белковой молекулы, встроенной в мембрану. Наличие случайности в воротных процессах проистекает из случайных столкновений молекул воды и других молекул со структурными элементами канала.

Кроме ионных насосов и каналов для выполнения основных функций нервной системы нейронам требуются и другие мембранные белки.

Одним из таких необходимых белков является фермент аденилатциклаза, который регулирует внутриклеточную концентрацию циклического аденозинмонофосфата (циклического АМФ). Циклические нуклеотиды, такие, как циклический АМФ, существенны для ряда клеточных функций, механизмы которых в деталях еще не изучены. Мембранный фермент аденилатциклаза, по-видимому, состоит из двух основных субъединиц - каталитической и регуляторной. Каталитическая субъединица способствует образованию циклического АМФ. Различные регуляторные субъединицы, которые, как полагают, физически обособлены от каталитических, могут связывать специфические молекулы (включая медиаторы, открывающие и закрывающие каналы) и тем самым контролировать содержание циклического АМФ в клетке. Регуляторные субъединицы разных типов называются в соответствии с теми молекулами, которые в физиологических условиях с ними связываются; одна из них, например, названа серотонинактивируемой аденилатциклазой. Известно, что аденилатциклаза и родственные ей мембранные ферменты выполняют в нейронах ряд регуляторных функций, и точный механизм их действия является сейчас объектом интенсивного исследования.

В процессе эмбриогенеза нервной системы клетка должна уметь узнавать другие клетки, чтобы рост каждой из них происходил в «правильном» направлении и заканчивался образованием «правильных» связей. Процесс узнавания клетки клеткой и формирования на основе этого соответствующей структуры определяется мембранными белками специального класса, связанными с особыми углеводами. Изучение белково-углеводных комплексов, ответственных за узнавание клеток, находится пока на ранней стадии.

Внутренние мембранные белки, о которых я здесь рассказываю, не распределяются по всей клеточной мембране однородно и не присутствуют в равных количествах во всех нейронах. Плотность и тип белка определяются потребностями клетки и различны для разных нейронов и для разных частей одного и того же нейрона. Так, плотность каналов определенного типа варьирует от 0 до 10000 на квадратный микрон. Аксоны обычно не имеют химически управляемых каналов, тогда как в постсинаптических мембранах дендритов плотность таких каналов лимитируется лишь упаковкой канальных молекул. В то же время мембраны дендритов обычно имеют мало электрически управляемых каналов, тогда как в мембранах аксонов их плотность может доходить в некоторых местах до 1000 каналов на квадратный микрон.

Внутренние мембранные белки синтезируются первоначально в теле нейрона и хранятся в мембране в небольших пузырьках. Для перемещения таких пузырьков от места их синтеза к месту их функционирования нейроны имеют специальную транспортную систему. Эта система, по-видимому, перемещает пузырьки небольшими скачками с помощью сократимых белков. Достигнув места своего назначения, белки встраиваются в поверхностную мембрану, где и функционируют до тех пор, пока не будут удалены оттуда и не распадутся внутри клетки. Точно не известно, каким образом клетки решают, куда какой мембранный белок поместить. Также неизвестен и механизм, который регулирует синтез, встраивание и разрушение мембранных белков. Метаболизм мембранных белков составляет одну из центральных проблем биологии клетки.

Каким образом свойства различных мембранных белков, которые я здесь обсуждаю, связаны с функцией нейрона? Чтобы ответить на этот вопрос, вернемся к рассмотрению нервного импульса и проанализируем более детально те молекулярные процессы, которые лежат в основе его генерации и распространения. Как мы видели, внутренность нейрона имеет отрицательный потенциал в 70 мВ относительно наружной среды. Этот «потенциал покоя» является следствием ионных градиентов, создаваемых натриевым насосом, и присутствием в клеточной мембране некоторого класса постоянно открытых каналов, избирательно проницаемых для ионов калия. Насос выталкивает наружу ионы натрия, обменивая их на ионы калия, и делает внутриклеточную среду в 10 раз богаче ионами калия по сравнению с наружной средой. Калиевые каналы мембраны позволяют ионам калия, находящимся в непосредственной близости от мембраны, выходить из клетки совершенно свободно. В состоянии покоя проницаемость мембраны для ионов натрия низка, так что не существует почти никакого встречного потока ионов натрия из внешней среды во внутреннюю, несмотря на то что внешняя среда в 10 раз богаче ионами натрия, чем внутренняя. В связи с этим поток калия создает дефицит положительных зарядов на внутренней поверхности клеточной мембраны и избыток положительных зарядов на ее наружной поверхности. В результате возникает разность потенциалов в 70 мВ, причем внутренность клетки имеет отрицательный потенциал по отношению к наружной среде.

Распространение нервного импульса определяется присутствием в мембране нейрона электрически управляемых натриевых каналов, открывание и закрывание которых ответственно за потенциал действия. Каковы характеристики этих важных канальных молекул? Хотя с химической точки зрения натриевый канал еще не достаточно хорошо изучен, известно, что он является белком с молекулярным весом в диапазоне от 250000 до 300000. Диаметр поры этого канала составляет 0,4-0,6 нм; через такую пору могут проходить ионы натрия, связанные с молекулами воды. На поверхности канала имеется много заряженных групп, размещенных в критических точках. Эти заряды обусловливают наличие большого электрического дипольного момента, который меняется по направлению и по величине в соответствии с конформационными изменениями канала, сопровождающими переход из закрытого состояния в открытое.

Поскольку поверхностная мембрана клетки очень тонка, трансмембранная разность потенциалов в 70 мВ создает внутри покоящейся мембраны сильное электрическое поле порядка 100 кВ/см. Подобно тому как магнитные диполи имеют тенденцию ориентироваться вдоль силовых линий магнитного поля, электрические диполи белка натриевого канала стремятся встать параллельно линиям электрического поля мембраны. Изменения напряженности электрического поля могут переводить канал из закрытого состояния в открытое. По мере того как под влиянием входящих ионов натрия внутренняя поверхность мембраны становится все более положительной, натриевые каналы все дольше находятся в открытом состоянии. Процесс открывания натриевых каналов под влиянием изменения потенциала мембраны называют активацией натриевых каналов.

Этот процесс останавливается благодаря развитию другого процесса, названного натриевой инактивацией. Трансмембранная разность потенциалов, явившаяся причиной открывания натриевых каналов, затем переводит их в особое закрытое конформационное состояние, отличное от состояния, характерного для канала в покое. Второе закрытое состояние, названное состоянием инактивации, развивается медленнее, чем процесс активации, так что до того, как каналы закроются под влиянием инактивации, они остаются короткое время открытыми. В состоянии инактивации каналы пребывают несколько миллисекунд, а затем возвращаются в нормальное состояние покоя.

Полный цикл активации и инактивации в норме включает в себя открывание и закрывание тысяч натриевых каналов. Как можно узнать, с чем связано увеличение общей мембранной проницаемости: с открыванием и закрыванием некоторого числа каналов по закону «все или ничего» или с работой каналов, у каждого из которых проницаемость может меняться градуально? Частичный ответ на этот вопрос был получен с помощью новой методики, которая соотносит флуктуации мембранной проницаемости с вероятностным характером конформационных изменений канальных белков. Можно много раз вызывать открывание канала и вычислить среднюю проницаемость за какое-то время, а также точные ее значения в каждом испытании. Флуктуации точных значений проницаемости относительно среднего значения укладываются в 10% или около того. Анализ этих флуктуации показывает, что натриевые каналы работают по закону «все или ничего» и что открывание каждого канала увеличивает проводимость мембраны на 8-10-12 Ом-1. Одним из принципиальных моментов для понимания работы нейрона является необходимость развития сколько-нибудь полной теории, которая опишет поведение натриевых каналов и свяжет его с молекулярной структурой канального белка.

Как я уже кратко отметил выше, аксоны также имеют электрически управляемые калиевые каналы, которые помогают прекращать нервный импульс, позволяя ионам калия выходить из аксона, противодействуя тем самым входящему потоку ионов натрия. В теле нейрона ситуация еще более сложная, поскольку мембрана там пронизана каналами пяти типов. Различные каналы открываются с различными скоростями, остаются открытыми на протяжении разных интервалов времени и являются избирательно проницаемыми для разных ионов (натрия, калия и кальция).

Наличие в теле нейрона каналов пяти типов (в аксоне их только два) приводит к более сложным законам генерации нервных импульсов. Если на аксон подается некоторый постоянный стимул, аксон генерирует только одиночный импульс в ответ на начало стимуляции. Тело же клетки генерирует в таком случае целый ряд импульсов, частота которых определяется интенсивностью стимула.

Нейроны способны генерировать нервные импульсы в широком диапазоне частот: от одного или менее до нескольких сотен в секунду. Все нервные импульсы имеют одну и ту же амплитуду, так что информация, которую они несут, представлена числом импульсов, генерируемых в единицу времени: такой способ кодирования известен под названием частотного кодирования. Чем больше величина сигнала, который должен быть передан, тем выше частота разряда.

Когда нервный импульс проходит по всей длине аксона и прибывает к его окончанию, из пресинаптической мембраны высвобождается один из видов медиаторов. Этот медиатор диффундирует к постсинаптической мембране, где индуцирует открывание химически управляемых каналов. Ионы, проходящие через открытые каналы, вызывают изменения потенциала, известные под названием синаптических потенциалов.

Большая часть того, что известно о синаптических механизмах, получена в экспериментах на определенном синапсе: нервно-мышечном соединении, управляющем сокращением мышц лягушки. Аксон мотонейрона лягушки проходит на протяжении нескольких сотен микрон вдоль поверхности мышечной клетки, образуя несколько сотен синаптических контактов на расстояниях порядка микрона друг от друга. В каждой пресинаптической области легко обнаружить характерные синаптические пузырьки.

В синаптическом пузырьке содержится около 10000 молекул медиатора - ацетилхолина. Когда нервный импульс достигает синапса, запускается цепь событий, кульминацией которых являются слияние пузырька с пресинаптической мембраной и происходящее благодаря этому высвобождение ацетилхолина в щель между пресинаптической и постсинаптической мембранами; этот процесс называют экзоцитозом. Слившийся с мембраной пузырек в дальнейшем отделяется от нее и быстро вновь наполняется ацетилхолином, чтобы затем вновь опорожниться.

В последнее время были вскрыты многие детали событий, приводящих к экзоцитозу. Выяснилось, что слияние пузырьков с пресинаптической мембраной, по всей видимости, запускается быстрым, но кратковременным увеличением концентрации кальция в окончании аксона. Прибытие в окончание нервного импульса приводит к открыванию химически управляемых кальциевых каналов и появлению потока кальция внутрь окончания. Однако наблюдающееся вследствие этого увеличение концентрации кальция бывает лишь кратковременным, поскольку в окончании содержится специальный механизм, который быстро устраняет свободный кальций и восстанавливает его концентрацию до нормального, очень низкого уровня. Кратковременный резкий подъем уровня свободного кальция приводит к слиянию заполненных медиатором пузырьков с пресинаптической мембраной, но точный механизм этого важного процесса еще не совсем понятен.

Интересные детали структуры пресинаптической мембраны были выявлены методом криоскалывания, который позволяет разъединить слои двуслойной мембраны и делает внутренние мембранные белки доступными для исследования методом электронной микроскопии. В нервно-мышечном соединении лягушки на ширине каждого синапса тянется двойной ряд крупных мембранных белков. К этим белкам или вблизи них прикрепляются синаптические пузырьки. Только такие пузырьки могут сливаться с мембраной и выделять медиатор; другие пузырьки, по-видимому, остаются в резерве на некотором расстоянии от мембраны. Слияние пузырька с мембраной является случайным процессом, и каждый пузырек ведет себя при этом независимо от других.

Нервно-мышечное соединение лягушки; электронная микрофотография получена Хойзером. Аксон отделяется от мышечной клетки синаптической щелью. Синаптические пузырьки группируются вдоль пресинаптической мембраны; ближе к центру видны два синаптических контакта. Постсинаптическая мембрана мышечной клетки имеет одну особенность, не обнаруживаемую в других синапсах: против каждого контакта мембрана образует складки.

Реплики пресинаптической мембраны нервно-мышечного соединения лягушки после криоскалывания. А. Состояние мембраны через 3 мс после раздражения мышцы. Через мембрану аксона тянется двойной ряд частиц - мембранных белков, которые могут быть либо кальциевыми каналами, либо структурными белками, присоединяющими к себе пузырьки. Б. Состояние мембраны через 5 мс после стимуляции. Стимуляция привела к слиянию синаптических пузырьков с пресинаптической мембраной и образованию углублений.

Менее чем за 100 микросекунд ацетилхолин высвобождается из слившишхся с мембраной пузырьков, пересекает синаптическую щель и связывается с ацетилхолиновым рецептором - внутренним мембранным белком, встроенным в постсинаптическую мембрану. Рецептор одновременно является канальным белком, химически управляемым ацетилхолином. Когда к каналу прикрепляются две молекулы ацетилхолина, они снижают энергетический уровень молекулы белка в конформации, соответствующей открытому состоянию, и тем самым увеличивают вероятность того, что канал будет открыт. Переход канала в открытое состояние является случайным событием; среднее время пребывания в этом состоянии около миллисекунды. Каждый пакет из 10000 ацеталхолиновых молекул приводит к открыванию примерно 2000 каналов.

Медиатор выделяется в щель синаптического контакта между нейронами из пузырьков, которые сливаются с пресинаптической мембраной аксона и раскрываются; этот процесс назван экзоцитозом. На данной электронной микрофотографии нервно-мышечного синапса лягушки пузырьки аксонного окончания запечатлены в момент высвобождения ацетилхолина; микрофотография получена Хойзером.

Синаптические пузырьки группируются вблизи пресинаптической мембраны. На схеме показаны предположительные стадии экзоцитоза. Заполненные пузырьки движутся к синаптической щели, сливаются с мембраной, выделяют содержимое, а затем вновь отделяются от мембраны, восстанавливают свою форму и заполняются медиатором.

За тот короткий период, в течение которого канал остается открытым, через него проходит около 20000 ионов натрия и приблизительно столько же ионов калия. В результате этих ионных потоков трансмембранная разность потенциалов уменьшается почти до нуля. Насколько близко она подходит к нулю, зависит от того, как много каналов было открыто и как долго они оставались открытыми. Ацетилхолин, высвобожденный типичным нервным импульсом, приводит к возникновению постсинаптического потенциала, или изменению напряжения, длящегося всего около пяти миллисекунд. Поскольку постсинаптические потенциалы обусловлены работой каналов, управляемых химически, а не электрически, их параметры сильно отличаются от параметров нервного импульса. Они обычно меньше по амплитуде, имеют большую длительность и могут плавно меняться по величине в зависимости от количества выделенного медиатора и, следовательно, от числа открытых каналов.

Различные типы химически управляемых каналов демонстрируют разную избирательность. Некоторые из них сходны с ацетилхолиновым каналом, пропускающим ионы натрия и калия почти без предпочтения. Другие каналы высоко избирательны. Изменение потенциала, возникающее на данном синапсе, зависит от избирательности открывающихся каналов. Если в клетку входят положительные ионы, происходит изменение потенциала в положительном направлении. Сдвиги потенциала в положительную сторону имеют тенденцию открывать электрически управляемые каналы и способствовать генерации нервных импульсов; в связи с этим они получили название возбуждающих постсинаптических потенциалов. Если положительные ионы (обычно калий) выходят из клетки, происходит изменение потенциала в отрицательном направлении, что способствует закрыванию электрически управляемых каналов. Такие постсинаптические потенциалы противодействуют возникновению нервных импульсов, и поэтому они названы тормозными. И возбуждающие, и тормозные постсинаптические потенциалы обычны для нейронов мозга.

Ацетилхолиновый канал в постсинаптической мембране открывается молекулами ацетилхолина, выделяемыми в синаптическую щель. Рисунок изображает ацетилхолиновый рецептор в нервно-мышечном соединении лягушки. Две молекулы ацетилхолина быстро связываются с закрытым каналом в покое и формируют комплекс из рецептора и ацетилхолина (1, 2). Этот комплекс претерпевает конформационные изменения, в результате которых канал открывается для прохождения ионов натрия и калия (3). Время, необходимое для конформационных изменений комплекса, лимитирует скорость реакции. Канал остается открытым в среднем около 1 мс и затем вновь превращается в рецептор-ацетилхолиновый комплекс. Пока канал открыт, через него проходит около 20000 ионов натрия и равное количество ионов калия. Ацетилхолин быстро отделяется и разрушается ферментом ацетилхолинэстеразой.

Синапсы мозга отличаются от синапсов нервно-мышечного соединения в нескольких аспектах. В то время как в нервно-мышечных соединениях ацетилхолин всегда действует возбуждающе, действие того же самого вещества в мозгу в одних синапсах является возбуждающим, а в других тормозным. И если в нервно-мышечных соединениях медиатором обычно служит именно ацетилхолин, то каналы мозговых синапсов регулируются самыми различными медиаторами. Однако каждое данное синаптическое окончание выделяет только один тип медиатора, и в соответствующей постсинаптической мембране имеются каналы, управляемые этим медиатором. В противоположность активируемым ацетилхолином каналам нервно-мышечного синапса, всегда открывающимся примерно на одну миллисекунду, в некоторых типах мозговых синапсов имеются каналы, открывающиеся на доли миллисекунды, а в некоторых других каналы могут оставаться открытыми сотни миллисекунд. Последнее большое различие состоит в том, что в области нервно-мышечного соединения лягушки аксон образует сотни синаптических контактов с мышечной клеткой, а в мозгу аксоны обычно устанавливают только один-два синаптических контакта с данным нейроном. Как и можно было ожидать, такие различия в функциональных свойствах коррелируют со значительными различиями в структуре.

Как мы видели, интенсивность стимула кодируется частотой импульсов. В синапсе декодирование производится с помощью двух процессов: временной суммации и пространственной суммации. В процессе временной суммации каждый постсинаптический потенциал добавляется к суммарному потенциалу предшественников, вызывая таким образом изменение потенциала, средняя амплитуда которого отражает частоту поступающих импульсов. Другими словами, нейрон, который разряжается с высокой частотой, выделяет из своих синаптических окончаний больше молекул медиатора, чем нейрон, разряжающийся с меньшей частотой. А чем больше молекул медиатора выделяется за данное время, тем больше каналов открывается в постсинаптической мембране и, следовательно, тем выше постсинаптический потенциал. Пространственная суммация - это в некотором смысле эквивалентный процесс, только он отражает интеграцию нервных импульсов, прибывающих от всех нейронов, находящихся в синаптическом контакте с данным нейроном. Итоговое изменение потенциала, получившееся в результате временной и пространственной суммации, кодируется частотой нервных импульсов для передачи в другие клетки, расположенные в нейронной сети «ниже по течению».

Я описал здесь то, что обычно понимают под нормальной передачей информации в нервных сетях, при которой изменения постсинаптического потенциала кодируются частотой нервных импульсов и передаются по аксону другим нервным клеткам. Однако в последние годы было обнаружено, что в некоторых случаях постсинаптический потенциал не трансформируется в нервный импульс. Так, изменение напряжения, связанное с синаптическим потенциалом, может непосредственно вызвать выделение медиатора из соседней зоны без возникновения импульса. Полагают, что такое непосредственное воздействие может играть роль в синаптических контактах между дендритами, а также в некоторых цепях с обратной связью, где один дендрит вступает как пресинаптический в контакт с другим дендритом, а тот в свою очередь, тоже как пресинаптический, вступает в контакт с первым. Такие короткие цепи обратной связи, по-видимому, обычны для мозга, но их роль в переработке информации пока еще не выяснена.

Большинство современных исследований нейрона сосредоточено на мембранных белках, наделяющих двухслойную клеточную мембрану, которая сама по себе лишена каких-нибудь особенностей, специфическими свойствами, определяющими функционирование мозга. Что касается канальных белков, то имеется еще много нерешенных вопросов, касающихся механизма открывания, избирательности и регуляции. В последующие 5-10 лет, возможно, удастся связать физические процессы открывания и избирательность с молекулярной структурой каналов. Основы регуляции каналов меньше всего изучены, но сейчас начинают интенсивно исследоваться. Как теперь становится понятно, в регуляции каналов определенную роль могут играть гормоны и другие вещества. К центральным проблемам синаптического взаимодействия нужно отнести экзоцитоз и другие процессы, связанные с метаболизмом и выделением медиаторов. Можно ожидать, что усиленное внимание будет сконцентрировано на роли поверхностной мембраны в процессе роста и развития нейронов и образования синаптических связей, т.е. на тех удивительных процессах, которые закладывают фундамент интеграции нервной системы.

Э. КЭНДЕЛ

Малые системы нейронов

Такие системы представляют собой элементарные единицы мозговой деятельности. Изучение простых животных, например крупного брюхоногого моллюска аплизии, показывает, что Малые системы нейронов способны к некоторым формам обучения и памяти

По убеждению многих нейробиологов в конце концов будет доказано, что уникальные свойства каждого человека - способность чувствовать, думать, обучаться и помнить - заключены в строго организованных сетях синаптических взаимосвязей между нейронами головного мозга. Поскольку в человеческом мозгу исследовать эти сети трудно, важная задача нейробиологии состояла в том, чтобы создать на животных модели, пригодные для изучения того, как взаимодействующие системы нейронов формируют поведение. Нейронные сети, осуществляющие завершенные поведенческие акты, позволяют исследовать иерархию взаимосвязанных вопросов. В какой мере варьируют свойства разных нейронов? Чем определяется организация взаимосвязей между нейронами? Как разная организация взаимосвязей создает разные формы поведения? Может ли обучение модифицировать взаимосвязанные нейроны, управляющие определенным видом поведения, а если может, то посредством каких механизмов происходит запоминание?

Среди многих функций, осуществляемых благодаря взаимодействию нейронов, самые интересные те, которые связаны с обучением (способностью изменять поведение под влиянием опыта) и с памятью (способностью сохранять эти изменения в течение некоторого времени). Обучение и память - это, пожалуй, наиболее отличительные черты умственной деятельности высших животных, достигающие наивысшей формы у человека. В самом деле, человек является тем, чем он есть, в значительной мере благодаря тому, чему он обучился. Поэтому чтобы понять обучение и изучить эволюцию поведения, теоретически важно определить, на каком филогенетическом уровне нейронной и поведенческой организации можно распознать начальные проявления процессов обучения и памяти, характерных для человеческого поведения. Такое определение важно также для практики. Исследовать клеточные механизмы памяти в мозгу человека или других млекопитающих трудно потому, что у них мозг невероятно сложен. Кроме того, таким исследованиям на мозге человека препятствуют этические соображения. Поэтому для науки важно было бы эффективно исследовать эти процессы в простых системах.

Группа нейронов на микрофотографии дорсальной поверхности абдоминального ганглия морского моллюска аплизии. Справа виден особенно крупный более темный нейрон. На карте абдоминального ганглия аплизии эта клетка идентифицирована как нейрон R2.

Могут возразить, что нельзя успешно изучать память и обучение человека на простых нейронных системах. Организация человеческого мозга представляется столь сложной, что попытка изучить обучение человека в упрощенной форме на простых системах обречена на неудачу. Человек обладает интеллектом, весьма развитой речью и абстрактным мышлением, которых нет у низших животных и которые, возможно, требуют качественно иных типов нейронной организации. Хотя такие возражения существенны, решающим не является вопрос о том, есть ли нечто специфическое в человеческом мозгу. Несомненно, есть. Но вопрос скорее состоит в том, есть ли у человеческого мозга и человеческого поведения что-нибудь общее с мозгом и поведением низших животных. Там, где есть элементы сходства, они могут свидетельствовать об общих принципах организации мозга, которые доступны успешному изучению в простых нервных системах.

Ответ на вопрос о сходстве очевиден. Этологи К. Лоренц (К. Lorenz), H. Тинберген (N. Tinbergen) и К. Фриш (К. von Frisch) показали, что у людей с низшими животными много общих форм поведения, в том числе элементарное восприятие и координация движений. В особенности широко распространена способность к обучению; она развилась у многих беспозвоночных и у всех позвоночных. Сходство некоторых процессов обучения позволяет думать, что нейронные механизмы данного процесса могут обладать общими свойствами на всем протяжении филогенеза. Например, нет, по-видимому, принципиальной разницы в структуре, химизме или функции между нейронами и синапсами у человека, кальмара, улитки и пиявки. Следовательно, полный и тщательный анализ обучения у такого беспозвоночного, вероятно, способен выявить механизмы, имеющие общее значение.

Примитивные беспозвоночные привлекательны для таких исследований тем, что их нервная система содержит от 10000 до 100000 клеток в отличие от многих миллиардов у более сложных животных. Клетки собраны в отдельные группы, называемые ганглиями, и каждый ганглий обычно содержит от 500 до 1500 нейронов. Такое количественное упрощение позволило связать функцию отдельных нейронов непосредственно с поведением. В результате получен ряд важных фактов, которые приводят к новым представлениям о связи между мозгом и поведением.

Первый важный вопрос, который следует рассмотреть исследователям простых нейронных систем, состоит в том, отличны ли друг от друга разные нейроны одной области. Этот вопрос - центральный для понимания того, как поведение осуществляется нервной системой, был до последнего времени предметом обсуждения. Некоторые нейробиологи считали, что по своим свойствам нейроны мозга достаточно сходны, чтобы можно было считать их идентичными элементами, связи между которыми обладают приблизительно одинаковым весом.

Против этого теперь выдвигаются веские возражения, особенно на основании изучения беспозвоночных, показавшего, что многие нейроны доступны индивидуальной идентификации и инвариантны у каждого члена вида. Представление об индивидуальных свойствах нейронов предложено еще в 1912 г. немецким биологом Р. Гольдшмидтом (R. Goldschmidt) на основании исследования нервной системы у примитивного червя, кишечного паразита аскариды. Мозг этого червя состоит из нескольких ганглиев. Изучая эти ганглии, Гольдшмидт обнаружил, что они содержат точно 162 клетки. Число это никогда не варьировало от животного к животному, и каждая клетка всегда занимала свое характерное положение. Несмотря на такие четкие результаты, работа Гольдшмидта осталась практически незамеченной.

Более 50 лет спустя к этой проблеме вернулись независимо друг от друга две группы исследователей в Гарвардской медицинской школе. М. Оцука (М. Otsuka), Э. Кравиц (Е. Kravitz) и Д. Поттер (D. Potter), исследуя омара, и У. Фрезье (W. Frazier), И. Купферман (I. Kupfermann), Р. Вазири (R. Waziri) и Р. Коггсхолл (R. Coggeshall), исследуя крупного морского моллюска аплизию, нашли подобную же, хотя и менее полную инвариантность в более сложных нервных системах этих более развитых беспозвоночных. Сходная инвариантность вскоре была обнаружена у многих беспозвоночных, в том числе у пиявки, рака, саранчи, сверчка и ряда моллюсков. Я ограничусь здесь рассказом об исследованиях аплизии, преимущественно исследованиях отдельного ганглия, а именно абдоминального. Сходные данные получены также на других беспозвоночных.

В абдоминальном ганглии аплизии нейроны варьируют по величине, положению, форме, пигментации, по характеру импульсации и химическим веществам, посредством которых они передают информацию другим клеткам. Такие различия позволяют распознавать и называть индивидуальные клетки (Rl, L1, R151 и т.д.). Некоторые из этих различий проявляются в характере импульсации. Одни клетки обычно «молчат», другие спонтанно активны. Среди активных одни генерируют регулярные потенциалы действия, или нервные импульсы, другие выдают повторные краткие залпы или серии импульсов. Теперь известно, что различия в импульсации объясняются разными типами ионных токов, генерируемых мембраной тела нейронов. Мембрана тела нервной клетки совершенно отлична от мембраны ее длинного отростка, аксона. Когда мембрана аксона активна, она, как правило, создает только приток ионов натрия и отставленный по времени выход ионов калия, тогда как мембрана тела клетки может продуцировать шесть или семь разных ионных токов в различных комбинациях.

1 R, Right - правый; L, Left - левый.- Прим. ред.

Рефлекс втягивания жабры возникает у аплизии в ответ на стимуляцию сифона или мантийного выступа. При этом жабра принимает положение, обозначенное цветной линией.

Пока еще неизвестно, обладает ли большинство клеток в нервной системе млекопитающих такой индивидуальностью. Впрочем, исследования сенсорных систем млекопитающих, описанные Д. Хьюбелом и Т. Визелем в настоящем выпуске, выявили поразительные важные различия между соседними нейронами (см. Д. Хьюбел и Т. Визель «Центральные механизмы зрения»). Работы по изучению развития головного мозга у позвоночных, описанные У. Коуэном, приводят к такому же выводу (см. У. Коуэн «Развитие мозга»),

В связи с тем фактом, что нейроны инвариантны, возникают новые вопросы. Инвариантны ли также синаптические связи между клетками? Всегда ли данная идентифицированная клетка соединена точно с тем же следующим нейроном, а не с другими? Многие физиологи изучали эти вопросы на беспозвоночных и нашли, что действительно клетки всегда образуют одни и те же виды соединений с другими клетками. Инвариантны не только связи, но и «знак», или функциональное выражение, этих связей, т.е. их тормозное или возбудительное действие.

Поэтому в, дальнейшем Фрезье, Дж. Бленкеншип (J. Blankenship), Г. Вахтель (Н. Wachtel) и я пользовались идентифицированными клетками, чтобы выявить правила, определяющие функциональные свойства связей между клетками. Отдельный нейрон обладает множеством веточек и образует множество соединений. Мы задались рядом вопросов: все ли связи нейрона специализированы для торможения или возбуждения, или же его импульсация может производить разное действие в его разных ветвях? Чем определяется возбудительный или тормозный эффект связи? В чем причина того, что связь является возбудительной или тормозной? Определяется ли знак синаптического действия химической структурой медиатора, выделяемого пресинаптическим нейроном, или же определяющим фактором служит природа постсинаптического рецептора? Выделяет ли нейрон на всех своих окончаниях один и тот же медиатор?

Карта абдоминального ганглия Aplysia californica, на которой показано положение идентифицированных нейронов; они обозначены L или R (от Left - левая и Right - правая половины ганглия) и пронумерованы. Эти нейроны являются частями скопления, образованного клетками с одинаковыми свойствами; они, кроме того, помечены буквой, обозначающей скопление (LD), и индексом, указывающим на поведенческую функцию нейрона, например, НЕ для возбудителя сердца (от Heart excitator) и G1 и G2 для двух мотонейронов жабры (от Gill - жабра).

Характер импульсации идентифицированных нейронов в абдоминальном ганглии аплизии. R2 обычно «молчит», R3 выдает регулярную импульсацию, R15 - регулярные пачки импульсов и L10 - нерегулярные пачки. L10 является командной клеткой, управляющей остальными клетками в системе.

Один из путей исследования этих вопросов состоит в том, чтобы проследить за разными связями клетки. Первая же рассмотренная нами клетка дала ясный ответ: по разным своим связям она оказывала разное действие. Она возбуждала одни следующие за ней клетки, тормозила другие и (пожалуй, совершенно неожиданно) образовывала двойственную связь, как возбудительную, так и тормозную, с третьей клеткой. Кроме того, она всегда возбуждала точно одни и те же клетки, всегда тормозила другую определенную группу клеток и всегда имела двойственную связь с третьей группой. Ее синаптическое действие создавалось одним и тем же медиатором ацетилхолином. Будет ли это действие возбудительным или тормозным, зависело от реакции медиатора с разными типами рецепторов на постсинаптических клетках. Рецепторы определяли знак синаптического действия, управляя разными ионными каналами в мембране, в основном натриевыми, для возбуждения и хлорными для торможения. Клетки, к которым приходили связи двойного действия, обладали для одного и того же медиатора рецепторами двух типов: один управлял натриевым каналом, другой - хлорным. Таким образом, функциональное свойство химической синаптической передачи определяется типом рецептора, который находится на данном постсинаптическом участке следующей клетки. [Сходные результаты получила Ж. Кихоу в Эколь Нормаль в Париже, детально проанализировав свойства разных ацетилхолиновых рецепторов.]

Инвариантность связей между клеткой L10 и некоторыми из следующих за ней клеток. А. Опыт, в котором двуствольные микроэлектроды для регистрации и для проведения тока были введены в L10, пресинаптический нейрон, и три следующие за ним клетки: L10 вызывает возбуждение (обозначено белым) в RB, торможение (черным) в LD и возбуждение и торможение в L7. Б. Соответствующие записи импульсации. В. Несколько наложенных записей, на которых виден короткий, но постоянный латентный период между импульсом в пресинаптическом нейроне и ответом двух следующих за ним клеток. Г. Наложения записей, полученных от L10 и L7, показывают, что эффект бывает возбудительным, когда L10 действует первым, как показывают высокие и узкие импульсы, и тормозным, когда он действует вторым, как показывают низкие и широкие импульсы.

Следовательно, как и предположили в свое время Л. Тауц (L. Tauc) и Г. Гершенфельд (Н. Gerschenfeld) из Института Марея в Париже, химический медиатор является лишь разрешающим агентом, а директивным компонентом синаптической передачи служат природа рецептора и ионные каналы, с которыми он взаимодействует. Этот принцип оказался в значительной мере универсальным. Он действует в нейронах позвоночных и беспозвоночных и в нейронах, использующих разные медиаторы: ацетилхолин, гамма-аминомасляную кислоту (ГАМК), серотонин, дофамин и гистамин. (Ему подчиняется также действие на нейроны некоторых пептидных гормонов, о чем пойдет речь ниже.)

То, что в ганглиях беспозвоночных животных были открыты идентифицируемые клетки, которые образуют друг с другом строго определенные связи, привело к составлению «монтажных схем» разных поведенческих нейронных цепей и тем самым позволило точно исследовать причинную связь отдельных нейронов с поведением. Термин «поведение» относится к доступным наблюдению действиям организма, начиная от таких сложных актов, как речь или ходьба, и до таких простых, как движение части тела или изменение ритма сердца. К типам поведения, хотя бы отчасти исследованным у пиявок, раков и брюхоногих моллюсков, относятся питание, разные локомоторные действия и различные реакции избегания и защиты.

назад содержание далее




ПОИСК:




© FILOSOF.HISTORIC.RU 2001–2021
Все права на тексты книг принадлежат их авторам!

При копировании страниц проекта обязательно ставить ссылку:
'Электронная библиотека по философии - http://filosof.historic.ru'
Сайт создан при помощи Богданова В.В. (ТТИ ЮФУ в г.Таганроге)


Поможем с курсовой, контрольной, дипломной
1500+ квалифицированных специалистов готовы вам помочь