Первый факт, полученный в этих исследованиях, состоит в том, что отдельные клетки осуществляют над поведением специфичный и часто поразительно мощный контроль. Это можно проиллюстрировать сравнением нервного контроля работы сердца у аплизии и у человека.
Человеческое сердце бьется спонтанно. Присущий ему ритм модулируется тормозным действием холинергических нейронов (медиатором служит ацетилхолин), аксоны которых идут в составе блуждающего нерва, и возбуждающим действием норадренергических нейронов, аксоны которых образуют ускоряющий нерв. В модуляции участвует несколько тысяч нейронов. У аплизии сердце тоже бьется спонтанно; его ритм модулируется тормозным действием холинергических нейронов и возбуждающим действием серотонинергических нейронов, но в модуляции участвуют всего лишь четыре нейрона! Две клетки возбуждают сердце (по существу, важную роль играет только «главная возбудительная» клетка), и две клетки тормозят его. Три другие клетки вызывают сокращение кровеносных сосудов и тем самым регулируют кровяное давление. Поскольку отдельные клетки неизменно связаны с одними и теми же следующими за ними клетками и могут производить эффекты разного знака, некоторые из них, расположенные в критических точках нервной системы, способны управлять целой последовательностью поведенческих актов. Еще в 1938 г. К. Вирсма (С. Wiersma) из Калифорнийского технологического института в опытах на раках установил важное значение отдельных клеток для поведения и назвал их «командными клетками». Такие нейроны найдены у многих животных. Некоторые из них оказались нейронами двойного действия. Впоследствии Дж. Кестер (J. Koester), И. Мейери (Е. Mayeri) и я, работая на аплизии в Медицинской школе Ньюйоркского университета, установили, что описанный нейрон двойного действия является командной клеткой для нейронной цепи, управляющей кровообращением. Одна эта клетка учащает ритм сердца и увеличивает объем выталкиваемой им крови, возбуждая главную клетку, возбуждающую сердце, и одновременно тормозя клетки, тормозящие сердце, а также клетки, вызывающие сужение крупных кровеносных сосудов. В результате усиленной активности одного этого нейрона сердце бьется быстрее и накачивает больше крови.
Таков лишь один простой пример поведенческих функций командной клетки. У рака и даже у более сложного животного - золотой рыбки - один импульс одного командного нейрона заставляет животное спасаться от грозящей ему опасности. Недавно В. Маунткасл (V. Моuntcastle) из Медицинской школы Университета Дж. Гопкинса высказал в этой связи предположение, что в головном мозгу приматов небольшие группы клеток, возможно, выполняют подобные командные функции по управлению произвольными движениями.
Следовательно, функциональное назначение клеток двойного действия состоит в том, что они вызывают совокупность разных физиологических эффектов. Подобная же совокупность действий может быть произведена нейроэндокринными клетками - нейронами, которые выделяют гормоны (химические вещества, обычно переносимые кровотоком для действия на больших расстояниях). Абдоминальный ганглий аплизии содержит два скопления нейроэндокринных клеток, которые называются пазушными клетками. Купферман (Kupfermann), работающий в нашем отделе Медико-хирургического колледжа Колумбийского университета, Ст. Арч (St. Arch) из Колледжа Рида, а также Ф. Штрумвассер (F. Strumwasser) с сотрудниками из Калифорнийского технологического института показали, что пазушные клетки выделяют полипептидный гормон, регулирующий яйцекладку. Мейери нашел, что этот гормон оказывает длительное действие на разные клетки абдоминального ганглия, возбуждая одни и тормозя другие.
Одной из клеток, возбуждаемых этим гормоном, является командная клетка двойного действия, управляющая ритмом сердца. При этом ритм ускоряется и приток крови к тканям усиливается, что необходимо во время яйцекладки. Таким образом, на точное расположение связей, которые служат взаимодействию на близких расстояниях, накладывается столь же точно организованное взаимодействие на больших расстояниях, которое осуществляется гормонами, выделяемыми нейроэндокринными клетками. Строго определенный эффект каждого гормона, по-видимому, зависит, как и синаптические эффекты, от природы рецепторов на клетках-мишенях.
На основании того факта, что поведение управляется инвариантными клетками, связанными друг с другом точно и инвариантно, можно было бы думать, что простые животные отличаются от более сложных стереотипными и фиксированными репертуарами активности. Но это не так. Изучение разных беспозвоночных показало, что поведение простых животных вполне способно видоизменяться посредством обучения.
Регуляция поведения аплизии, осуществляемая одним нейроном (L10) и выражающаяся в его воздействии на сердечно-сосудистые мотонейроны. Известно, что L10 образует синаптические связи (А) с шестью клетками (наличие такой синаптической связи у LDHE еще не исследовано); цвет каждой клетки показывает, какой медиатор она использует. Можно видеть (Б), что активность L10, возбуждая RBHE и тормозя LDHI, ускоряет сокращение сердца и повышает кровяное давление.
Мы исследовали этот вопрос весьма детально на примере одного из самых простых видов поведения аплизии - защитном рефлекторном акте, при котором стимул вызывает втягивание жабры. Жабра находится в мантийной полости. Полость покрыта мантийным выступом который заканчивается мясистым желобом - сифоном. При слабой или умеренной стимуляции сифона жабра сокращается и втягивается в мантийную полость. Этот рефлекс аналогичен реакциям избавления, присущим почти всем высшим животным, например отдергиванию руки от горячего предмета у человека. У аплизии и других животных при таких рефлексах наблюдаются две формы обучения: привыкание (габитуация) и сенситизация.
Привыкание означает ослабление поведенческой реакции при многократном повторении стимула, который вначале был новым. Когда на животное действует новый стимул, оно сначала отвечает комбинацией ориентировочного и защитного рефлексов. При повторении сигнала животное быстро обучается узнавать его. Если за ним не следует награда или он оказывается безвредным, животное ослабляет и в конце концов подавляет свои реакции на него. Хотя привыкание удивительно просто, оно, пожалуй, является самой распространенной формой обучения. Путем привыкания животные, включая человека, научаются игнорировать стимулы, утратившие новизну или значение. Привыкание освобождает их для реакций на стимулы, которые влекут за собой награду или имеют значение для выживания. Считается, что привыкание является первым процессом обучения, возникающим у детей; оно обычно используется для изучения развития таких интеллектуальных процессов, как внимание, восприятие и память.
Нейронная цепь поведенческого рефлекса втягивания жабры у аплизии показана в виде схемы. Животное рефлекторно втягивает жабру, когда на сифон действует какой-нибудь стимул. Кожу сифона иннервируют 24 сенсорных нейрона; на схеме показаны только восемь из них. Сенсорные нейроны образуют моносинаптические, или прямые, связи с шестью идентифицированными мотонейронами жабры, показанными в ряду, который начинается с L7, и по меньшей мере с одной тормозной клеткой (L16) и с двумя возбуждающими вставочными нейронами (L22 и L23), которые образуют синапсы с мотонейронами.
В привыкании у позвоночных интересно то, что оно порождает и кратковременную и долговременную память и поэтому используется для исследования связи между ними. Мы с Т. Кэрью (Т. Carew) и Г. Пинскером (Н. Pinsker) нашли подобную связь у аплизии. После одного тренировочного опыта, состоящего из 10-15 тактильных раздражений сифона, наступает привыкание рефлекса втягивания. Память на этот стимул кратковременная; через час можно обнаружить частичное восстановление, а через день оно обычно становится почти полным. При таком типе обучения восстановление равнозначно забыванию. Однако при повторении более сложных задач обучения четыре повторных тренировочных опыта, всего лишь по 10 стимулов каждый, вызывают глубокое привыкание и запоминание стимула, которое длится недели.
Первый вопрос, каким задались мы с В. Кастеллучи (V. Castellucci), Купферманом и Пинскером, состоял в следующем: где локализуется кратковременное привыкание и каковы его механизмы? Нейронная цепь, управляющая втягиванием жабры, совсем проста. Стимуляция кожи сифона активирует там 24 сенсорных нейрона; они образуют прямые связи с четырьмя мотонейронами в жабре, а мотонейроны прямо соединены с мышцей. Сенсорные нейроны возбуждают также несколько вставочных, т.е. промежуточных нейронов.
Исследуя эти клетки во время привыкания, мы нашли, что при кратковременном привыкании изменяется сила связи сенсорных нейронов со следующими за ними центральными клетками - вставочными и мотонейронами. Такая локализация была весьма удачной, потому что позволяла исследовать, что происходит при привыкании, путем анализа изменений в обеих клетках - пресинаптическом сенсорном нейроне и постсинаптическом мотонейроне - и в единственной группе связей между ними.
Силу связи можно определять, регистрируя синаптическое действие, вызываемое в мотонейронах отдельным сенсорным нейроном. Можно имитировать опыт по тренировке привыкания, состоящей из 10-15 стимулов, непосредственно стимулируя сенсорный нейрон в той же строгой временной последовательности, какая применяется для целого животного. Стимул можно отрегулировать таким образом, чтобы он вызывал один потенциал действия. Когда нейрон отвечает потенциалом действия впервые, он производит весьма эффективное синаптическое действие, которое выражается крупным возбудительным постсинаптическим потенциалом в мотонейроне. Последующие потенциалы действия, создаваемые в сенсорном нейроне во время тренировочного опыта, вызывают все меньшие возбудительные постсинаптические потенциалы. Эта депрессия эффективности связи идет параллельно поведенческому привыканию и определяет его. Как и поведение, синаптическая депрессия, создаваемая одним тренировочным опытом, сохраняется больше часа. После второго такого опыта депрессия синаптического потенциала выражена сильнее, а последующие тренировочные опыты могут подавить синаптический потенциал полностью.
В чем причина изменений силы синаптических связей? Происходит ли изменение в пресинаптическом сенсорном нейроне, которое выражается в пониженном выходе медиатора, или же изменяется постсинаптическая клетка, что выражается в снижении чувствительности рецепторов к медиатору? Ответить на эти вопросы можно, проанализировав изменения амплитуды синаптического потенциала, проявляющиеся в его «квантовых» компонентах.
Процесс привыкания, когда реакция животного на стимул постепенно ослабевает, если он оказывается несущественным, является элементарной формой обучения и памяти, которая обнаруживается на уровне одиночного мотонейрона (М. Н.). Здесь показан такой опыт (А), в котором сенсорный нейрон (С. Н) аплизии образующий синапс на мотонейроне L7, стимулируется каждые 10 секунд Б. Отдельные кадры из двух последовательных тренировочных серий по 15 стимулов каждая, разделенных интервалами по 15 минут, показывают как ответ L7 они жается и исчезает.
Как впервые показали X. дель Кастильо (J. del Castillo) и Б. Катц (В. Katz) в Лондонском университетском колледже, медиатор выделяется не в виде отдельных молекул, а «квантами», или мультимолекулярными пакетами. Все пакеты содержат приблизительно одинаковое количество медиатора (по нескольку тысяч молекул). Как полагают кванты хранятся в субклеточных органеллах, называемых синаптическими пузырьками, которые во множестве видны в синаптических окончаниях на электронных микрофотографиях. Поскольку число молекул медиатора в каждом кванте обычно не меняется, количество квантов высвобождаемых каждым потенциалом действия, служит достаточно надежным показателем общего количества выделившегося медиатора Каждый квант в свою очередь вызывает в постсинаптической клетке миниатюрный постсинаптический потенциал характерной величины Величина эта служит показателем того, насколько чувствительны постсинаптические рецепторы к нескольким тысячам молекул медиатора выделяемым каждым пакетом.
Долговременное привыкание выявляется при сравнении синаптических связей между сенсорным нейроном (С. Н.) и мотонейроном L7 у нетренированной аплизии (контроль, А) и у аплизии, тренированной на долговременное привыкание (Б). У контрольных животных за импульсом в сенсорном нейроне следует крупный возбудительный синаптический ответ мотонейрона. У тренированных животных синаптическую связь почти невозможно обнаружить.
Исследуя аплизию, мы с Кастеллучи, нашли, что снижение амплитуды синаптического потенциала действия по мере привыкания идет параллелъно уменьшению числа выделяющихся химических квантов. Напротив, величина миниатюрного постсинаптического потенциала не менялась, что указывало на неизменность чувствительности постсинаптического рецептора. Эти данные говорят о том, что кратковременное привыкание локализуется в пресинаптических окончаниях сенсорных нейронов и что механизм привыкания состоит в постепенном снижении количества медиатора, высвобождаемого окончаниями сенсорного нейрона на центральных клетках-мишенях. Опыты на раке, проведенные Р. Цукером (R. Zucker) из Калифорнийского университета в Беркли и Ф. Красне (F. Krasne) из Калифорнийского университета в Лос-Анджелесе, а также опыты на кошке, поставленные П. Фейрелом (P. Farel) и Р. Томпсоном (R. Thompson) из Калифорнийского университета в Эр-вине, показывают, что этот механизм может быть универсальным. От чего зависит уменьшение числа квантов, высвобождаемых каждым потенциалом действия? Это число в значительной степени определяется концентрацией свободного кальция в пресинаптическом окончании. Кальций является одним из трех ионов, участвующих в генерации каждого потенциала действия в окончании. Деполяризующий эффект потенциала действия создается главным образом притоком ионов натрия в окончание, но он требует также меньшего и более позднего притока ионов кальция. Реполяризационное действие противоположного знака производится преимущественно выходом ионов калия, а приток кальция нужен для выделения медиатора. Как полагают, кальций придает синаптическим пузырькам способность связываться с пресинаптической мембраной в местах выделения медиатора. Это связывание является критическим этапом, предваряющим выход медиатора из пузырьков (процесс называется экзоцитозом). Возможно поэтому, что количество кальция, приходящее в окончания с каждым потенциалом действия, не фиксировано, а меняется и модулируется привыканием.
Наилучшим способом изучать изменения притока кальция в окончания была бы прямая регистрация активности в окончаниях. Нам не удалось осуществить ее из-за очень малых размеров окончаний. Но поскольку свойства кальциевых каналов в окончаниях сходны с их свойствами в теле клетки, один из наших дипломников М. Клейн (М. Klein) занялся исследованием изменений кальциевого тока в теле клетки, которые сопровождают синаптическую депрессию.
Кальциевый ток возникает и медленно нарастает во время потенциала действия; его обычно перекрывает калиевый ток. Для того чтобы демаскировать первый из них, мы действовали на ганглий тетраэтиламмонием (ТЭА) - веществом, которое в некоторой степени избирательно блокирует поздний калиевый ток. Блокируя реполяризующее действие калиевого тока, ТЭА незначительно удлиняет потенциал действия. Удлинение это в большой мере обусловлено беспрепятственным действием кальциевого тока. Вызываемое ТЭА удлинение потенциала действия служит хорошим критерием изменения кальциевого тока.
Затем мы определяли выделение медиатора из окончаний сенсорных нейронов по величине синаптического потенциала в мотонейроне и измеряли одновременно регистрируемые изменения кальциевого тока по критерию длительности потенциала действия. Мы нашли, что многократная стимуляция сенсорного нейрона с частотой, вызывающей привыкание, приводила к постепенному укорочению кальциевого компонента потенциала действия, что происходило параллельно уменьшению выхода медиатора. Спонтанное восстановление синаптического потенциала и поведения сопровождалось усилением кальциевого тока.
То, что мы до сих пор узнали о механизмах кратковременного привыкания, показывает, что этот тип обучения связан с модуляцией силы ранее сформированной синаптической связи. Сила связи определяется количеством выделяемого медиатора, которое в свою очередь зависит от того, насколько потенциал действия в пресинаптическом окончании активирует кальциевый ток. Поэтому сохранение кратковременного привыкания основано на том, что депрессия кальциевого тока в пресинаптическом окончании не прекращается в течение минут и часов.
Каковы пределы этого изменения? Насколько может измениться эффективность данного синапса в результате обучения, и как долго сохраняются такие изменения? Выше я указывал, что многократные тренировочные опыты могут привести к полной депрессии синаптических связей между сенсорными и моторными клетками. Удерживается ли такое состояние? Может ли долговременное привыкание привести к полной и длительной инактивации ранее активного синапса?
В связи с этими вопросами исследователи обучения давно ведут споры о соотношении кратковременной и долговременной памяти. Наиболее принято представление, что эти два вида памяти связаны с разными процессами. Однако оно основано на косвенных данных.
Совместно с Кастеллучи и Кэрью мы предприняли более прямую проверку этой гипотезы путем сравнения эффективности связей, образоманных популяцией сенсорных нейронов с идентифицированным мотонейроном жабры L7, в четырех группах аплизий: у нетренированных животных, служивших контролем, и в группах, исследованных соответственно через сутки, неделю и три недели после выработки долговременного привыкания. Было обнаружено, что у контрольных животных около 90% сенсорных нейронов имели чрезвычайно эффективные связи с L7, тогда как у животных, исследованных через сутки и через неделю после долговременного привыкания, их число составляло 30%. Даже через три недели только у 60% клеток можно было обнаружить связи с L7. Таким образом, в результате простого обучения ранее эффективные синаптические связи становятся неактивными и остаются в таком состоянии более недели.
Следовательно, в то время как кратковременное привыкание сопровождается кратким ослаблением эффективности синапса, долговременное привыкание вызывает более продолжительное и глубокое изменение, которое приводит к функциональному нарушению большинства ранее эффективных связей. Эти данные интересны по трем причинам: 1) они служат прямым доказательством того, что специальный случай долговременной памяти может быть объяснен продолжительным изменением эффективности синапса; 2) они показывают, что достаточно поразительно малой тренировки, чтобы вызвать глубокое изменение синаптической передачи в синапсах, играющих решающую роль при обучении, и 3) они ясно показывают, что кратковременное и долговременное привыкания локализуются в одной и той же части нейрона, а именно в синапсах, образованных сенсорными нейронами на мотонейронах. Кратковременное и долговременное привыкания связаны также с одним и тем же клеточным механизмом - депрессией передачи возбуждения. Теперь нужно определить, является ли долговременная синаптическая депрессия пресинаптической и связана ли она с инактивацией натриевого тока. Если окажется, что это так, то тем самым на более основательном уровне подтвердится представление о едином механизме кратковременной и долговременной памяти.
Сенситизация представляет собой несколько более сложную форму обучения; ее можно обнаружить на рефлексе втягивания жабры. Сенситизация представляет собой длительное усиление ранее существовавшего ответа животного на стимул в результате нанесения другого, ноцицептивного (болевого, повреждающего) стимула. В то время как привыкание требует от животного, чтобы оно научилось итерировать определенный стимул, потому что его последствия несущественны, сенситизация требует, чтобы животное научилось обращать внимание на стимул, так как он сопровождается потенциально болезненным эффектом или опасными последствиями. Поэтому когда на голову аплизии наносится вредоносный стимул, рефлекс втягивания жабры па многократную стимуляцию сифона очень усиливается. Как и привыкание, сенситизация может длиться от минут до дней и недель в зависимости от длительности тренировки. Здесь будет рассмотрена только ее кратковременная форма.
Мы с Кастеллучи установили, что сенситизация влечет за собой изменение синаптической передачи в том же самом пункте, который участвует в привыкании, а именно в синапсах, образованных сенсорными нейронами на центральных клетках-мишенях. Наши физиологические исследования и последующие морфологические исследования К. Бейли (С. Baily), М. Чен (М. Chen) и Р. Хоукинса (R. Hawkins) показывают, что нейроны, осуществляющие сенситизацию, оканчиваются близ синаптических терминалей сенсорных нейронов и усиливают выход медиатора, увеличивая число квантов, высвобождаемых каждым потенциалом действия в сенсорном нейроне. Поэтому такой процесс называется пресинаптическим облегчением. Эти данные представляют интерес, так как они показывают [как и более ранние данные о пресинаптическом торможении в другой системе, полученные Дж. Дьюделом (J. Dudel) и С. Куфлером (S. Kuffler) из Гарвардской медицинской школы], что нейроны обладают рецепторами для медиаторов в двух совершенно разных участках. От рецепторов на теле клетки и на дендритах зависит, возникнет ли в клетке потенциал действия, а от рецепторов на синаптических окончаниях зависит, сколько медиатора высвободится при каждом потенциале действия.
Поэтому на одни и те же пункты - пресинаптические окончания сенсорных нейронов - могут воздействовать противоположным образом две противоположные формы обучения. Во время привыкания они угнетаются в результате возникающей собственной активности нейрона, а при сенситизации в них наступает облегчение вследствие активности других нейронов, которые образуют на них синапсы. Эти данные, полученные на уровне отдельной клетки, подтверждают наблюдение, сделанное на поведенческом уровне, что привыкание и сенситизация представляют собой независимые друг от друга противоположные формы обучения.
В связи с этими данными возникает интересный вопрос. Сенситизация способна усилить нормальный рефлекс, но может ли она противодействовать глубокой депрессии рефлекса, вызванной долговременным привыканием? Если может, то восстанавливает ли она синаптические связи, полностью инактивированные долговременным привыканием?
Сенситизация является такой формой обучения и памяти, при которой ответ на стимул усиливается под влиянием другого, более сильного стимула. Здесь рефлекс втягивания жабры у аплизии усиливается в результате ноцицептивного раздражения области головы. Этот стимул активирует нейроны, которые возбуждают облегчающие вставочные нейроны (В. Н.); последние оканчиваются на синаптических окончаниях сенсорных нейронов. Эти нейроны пластичны, т. е. способны изменять эффективность своего синапса. Медиатор облегчающих вставочных нейронов, предположительно серотонин (точки в кружке), модулирует выделение медиатора сенсорного нейрона на возбуждающие вставочные нейроны и мотонейроны.
Кэрью, Кастеллучи и я изучили этот вопрос и нашли, что сенситизация устраняла депрессию в поведении. Кроме того, за один час сенситизирующая стимуляция головы аплизии восстанавливала функционально инактивированные синапсы (которые оставались бы в таком состоянии в течение недель).
Следовательно, в головном мозгу имеются синаптические пути, которые детерминированы процессами развития, но которые, будучи предрасположены к обучению, могут быть функционально инактивированы или реактивированы опытом. В самом деле, для этих поддающихся модификации синапсов достаточно небольшой тренировки или приобретенного опыта, чтобы вызвать в них глубокие изменения. Если бы эти данные оказались применимыми к мозгу человека, то это означало бы, что даже при простом социальном акте, например при беседе двух людей, активность нейронной механики в мозгу одного человека способна оказывать прямой и, возможно, длительный эффект на модифицируемые синаптические связи в мозгу другого.
Для экспериментатора особенно привлекательна кратковременная сенситизация, так как она обещает быть доступной биохимическому анализу. В качестве первого шага мы с Хоукинсом и Кастеллучи идентифицировали специальные клетки в абдоминальном ганглии аплизии, которые создают пресинаптическое облегчение. Вводя животному электроноплотную метку, чтобы наполнить ею нейрон и пометить его синаптические окончания, мы нашли, что последние содержат пузырьки, сходные с обнаруженными у аплизии Л. Школьник (L. Shkolnik) и Дж. Шварцем (J. Schwartz) в нейроне, медиатором которого, как ранее было установлено, является серотонин. В соответствии с возможной серотонинергической природой этой клетки, М. Брунелли (М. Brunelli), Кастеллучи, Т. Томоски-Сайкс (Т. Tomosky-Sykes) и я нашли, что серотонин усиливал моносинаптическую связь между сенсорным нейроном и мотонейроном L7, тогда как другие вероятные медиаторы подобного действия не оказывали.
Далее мы обнаружили интересную связь между серотонином и внутриклеточным посредником - циклическим аденозинмонофосфатом (цАМФ). Со времени классической работы И. Сьюзерленда-мл. (Е. Sutherland, Jr.) и его сотрудников в Университете Вандербилта известно, что большинство пептидных гормонов не входят в клетку-мишень, а действуют на рецептор клеточной поверхности и стимулируют фермент, называемый аденилатциклазой; этот фермент катализирует в клетке превращение аденозинтрифосфата (АТФ) в цАМФ, который затем действует как «второй посредник» («первым посредником» является гормон) в нескольких точках внутри клетки и вызывает ряд соответствующих изменений функции.
X. Седар (Н. Cedar), Шварц и я нашли, что сильная и длительная стимуляция проводящего пути, который идет у аплизии от головы и по которому осуществляется сенситизация, через синапс повышала содержание цАМФ во всем ганглии. Седар и Шварц, а также И. Левитан (I. Levitan) и С. Барондес (S. Barondes) показали, что длительное повышение содержания цАМФ можно вызвать также инкубацией ганглия с серотонином. Для выяснения связи между серотонином и цАМФ Брунелли, Кастеллучи и я вводили цАМФ в тело сенсорного нейрона и установили, что он тоже вызывает пресинаптическое облегчение, тогда как инъекция 5'-АМФ (продукта распада цАМФ) или другого второго посредника - циклического ГМФ - не давала такого эффекта.
Поскольку привыкание связано с уменьшением кальциевого тока, заманчиво было думать, что цАМФ производит свое облегчающее действие, усиливая кальциевый ток. Как было сказано, кальциевый ток обычно маскируется калиевым током. Поэтому мы с Клейном проследили за потенциалами действия в сенсорных нейронах, в которых калиевый ток был ослаблен посредством ТЭА. Стимуляция пути, который идет от головы и по которому осуществляется сенситизация, или же стимуляция одиночного облегчающего нейрона, усиливала кальциевый ток, что было видно по удлинению потенциала действия на фоне ТЭА, и это усиление сохранялось 15 минут или дольше. Оно шло параллельно с увеличением выхода медиатора, и параллельно этим двум синаптическим изменениям возрастал рефлекс на сенситизирующий стимул.
Усиление кальциевого тока, выраженное в продлении кальциевого компонента потенциала действия после стимуляции сенситизирующего пути, можно было создать внеклеточным нанесением серотонина или двух веществ, которые повышают внутриклеточный уровень цАМФ, ингибируя фосфодиэстеразу - фермент, катализирующий расщепление цАМФ. Такие же эффекты наблюдались после прямой внутриклеточной инъекции цАМФ, но не 5'-АМФ.
На основании этих данных Клейн и я предположили, что стимуляция облегчающих нейронов сенситизирующего пути ведет к выходу серотонина, который активирует серотонин-чувствительный фермент (аденилатциклазу) в мембране окончания сенсорного нейрона. Возникающее при этом в окончании увеличение количества цАМФ ведет к усиленной активации кальциевого тока либо непосредственно путем активации кальциевого канала, либо косвенно, снижением противодействующего калиевого тока. С каждым потенциалом действия растет приток кальция и выход медиатора.
Главное, что вначале привлекло к использованию аплизии для изучения поведения, было наличие крупных клеток, электрические свойства и связи которых доступны детальному исследованию. А теперь размеры этих клеток могут оказаться еще более выгодными для изучения субклеточных и биохимических механизмов обучения, с одной стороны, и возможных изменений мембранной структуры - с другой. Так, например, интересно узнать поточнее, как повышение уровня цАМФ при сенситизации связано с активацией кальциевого тока, поскольку установление механизма этой связи может послужить первым шагом к пониманию на молекулярном уровне этой простой формы кратковременного обучения.
На память приходит целый ряд механизмов. Как полагают, каналы, по которым ионы проходят через мембрану нейрона, состоят из белковых молекул. Поэтому очевидная возможность состоит в том, что цАМФ активирует одну или более протеинкиназ - ферментов, которые, по предположению П. Грингарда (P. Greengard) из Медицинской школы Йельского университета, могли бы служить общим молекулярным механизмом различных эффектов цАМФ внутри клетки. Протеинкиназы - это ферменты, которые фосфорилируют белки, иначе говоря, присоединяют фосфорильную группу к боковой цепи аминокислот серина или треонина в белковой молекуле и этим придают белкам иной заряд и иную конфигурацию, что меняет их функцию, активируя одни и инактивируя другие. Фосфорилирование могло бы служить эффективным механизмом регуляции памяти. Один из способов, каким могла бы действовать сенситизация, состоит в том, что белок кальциевого канала активируется (или же белок антагонистического калиевого канала инактивируется) при фосфорилировании его протеинкиназой, зависимой от цАМФ.
Модель кратковременной сенситизации и привыкания на уровне одиночного сенсорного нейрона, начиная с контрольной ситуации, когда клетка генерирует импульсы до наступления сенситизации или привыкания. Нервный импульс в концевой мембране нейрона открывает параллельно натриевым каналам (Na + ) ряд каналов для ионов кальция (Са++). Сенситизация вызывается группой клеток L29 (возможно, и другими), которые, как полагают, выделяют медиатор серотонин. Он действует на аденилатциклазу, фермент, катализирующий синтез циклического аденозинмонофосфата (цАМФ) в нейронных окончаниях. цАМФ повышает приток ионов кальция, возможно, создавая больше кальциевых каналов. Кальций усиливает слияние содержащих медиатор пузырьков с мембраной в местах его выделения, увеличивая вероятность последнего. При привыкании многократная импульсация в окончаниях, возможно, уменьшает число открытых кальциевых каналов, понижая приток кальция и инактивируя синапс.
Сенситизация занимает интересное место в иерархии обучения. Ее часто считают предшественницей классического условного рефлекса. В обеих этих формах рефлекс на стимул усиливается в результате активации другого пути. Сенситизация отличается от условного рефлекса тем, что она не ассоциативна; сенситизирующий стимул повышает рефлекторную реактивность независимо от того, сочетается ли он во времени со стимулом, вызывающим рефлекс. Теперь Э. Гелперин (A. Gelperin) из Принстонского университета, Дж. Мпитсос (G. Mpitsos) и С. Коллин (S. Collins) из Университета Кейса Западной резервной территории, а также Т. Кроу (Т. Crow) и Д. Олкон (D. Alkon) из Национальных институтов здравоохранения к настоящему времени обнаружили у моллюсков несколько типов ассоциативного обучения. Недавно мы с Т. Уолтерсом (Т. Walters) и Кэрью получили доказательства ассоциативного обучения у аплизии. Поэтому скоро мы будем в состоянии точно проанализировать, как механизмы сенситизации соотносятся с механизмами ассоциативного обучения.
Другое возможное теперь направление исследования состоит в рассмотрении связи между исходным развитием нейронной цепи у эмбриона и ее последующей модификацией обучением. И при развитии, и при обучении в нервной системе происходят функциональные изменения - меняются эффективность синапсов и другие свойства нейронов. Как соотносятся такие изменения? Основаны ли механизмы обучения на механизмах пластичности, проявляющейся во время развития или же позднее формируются совершенно новые специализированные для обучения процессы?
Какими бы ни оказались ответы на эти интригующие вопросы, при исследовании беспозвоночных животных возникло поразительное и обнадеживающее обстоятельство: теперь стало возможным точно локализовать и наблюдать на клеточном - а в конце концов, возможно, и на молекулярном - уровне простые свойства памяти и обучения. Хотя для сложного головного мозга высших животных характерны некоторые высшие проявления умственной деятельности, теперь стало ясно, что элементарные свойства того, что считается мыслительными процессами, можно обнаружить в активности лишь очень малого числа нейронов. Поэтому и с философской, и с методической точек зрения интересно будет узнать, в какой степени высшие формы мышления можно объяснить действием более простых компонентов и механизмов. В той мере, в какой возможны такие редукционистские объяснения, важно также установить, как единицы этой элементарной азбуки комбинируются для создания языка гораздо более сложных мыслительных процессов.
У. НАУТА, М. ФЕЙРТАГ
Организация мозга
Головной и спинной мозг млекопитающих, включая человека, состоит из нескольких миллиардов нервных клеток, причем отдельные нейроны могут быть связаны с тысячами других. Как же организована эта огромная трехмерная сеть?
Мы видим два общих подхода к представлению о нейроанатомии. Первый - высокопарный: утверждается, что мозг - вместилище ума, чувств и желаний, памяти и способности учиться, и того любопытного ощущения, которое свойственно людям, - ощущения будущего. Затем мы начинаем внимательно рассматривать, как этот таинственный орган выглядит, так сказать, «во плоти». Определенные части мозга, в особенности кора больших полушарий, удивительным образом организованы; другие поражают своей кажущейся неупорядоченностью. Но даже и самые высокоупорядоченные структуры, в которых организация нейронов и разнообразных связей между ними напоминает электронные схемы, сопротивляются нашим сегодняшним попыткам понять их.
О порядке и беспорядке в клеточной организации мозговых структур можно судить по этим двум микрофотографиям. Обе они представляют тонкие срезы мозга кошки, которые подверглись двойному окрашиванию: по методу Гольджи, позволяющему выявить некоторые из нейронов со всеми их отростками в виде черных силуэтов, и по методу Ниссля, приводящему к окрашиванию всех клеточных тел в синий цвет. Метод Гольджи обеспечивает прокрашивание только 5 или менее процентов всех нейронов, по-видимому, по случайному выбору; если бы прокрашивались все нейроны, данная ткань выглядела бы однородно черной. А. Зубчатая извилина гиппокампа; тела нейронов в форме продолговатых пирамид располагаются в ряд, отсылая свои отростки почти параллельным пучком. Б. Микрофотография относится к крупноклеточной ретикулярной формации. Здесь нейроны образуют неупорядоченную сеть.
Второй подход более прозаический. Мозг просто подразделяется на части, поскольку подходящие методы окрашивания выявляют в одних местах скопления нейронов, опутанных густой сетью их же собственных нитевидных отростков, в других же ткань состоит в основном из длинных Волокон нервных клеток - аксонов, которые обслуживают связи на далекие расстояния в нервной системе. Ткань первого рода - это серое вещество, второго - белое вещество.
Конечно, есть искушение приписать каждой области какую-нибудь функцию, как если бы мозг в целом был чем-то вроде радиоприемника. Но существо работы центральной нервной системы - головного и спинного мозга - это проведение входящей сенсорной информации к множеству структур и конвергенция на нейронах, которые возбуждают эффекторные органы: мышцы и железы. Следовательно, система в целом обладает свойствами, выходящими за пределы тех, которые можно обнаружить у простого набора модулей.
Возьмем, например, такую структуру мозга как субталамическое ядро. Его разрушение у человека ведет к моторной дисфункции, известной под названием гемибаллизма, при которой больной делает непроизвольные движения, как бы бросая мяч. Следует ли отсюда, что нормальной функцией субталамического ядра должно быть подавление движений, напоминающих бросание мяча? Конечно, нет; данное состояние больного только дает представление о работе центральной нервной системы, выведенной из равновесия отсутствием субталамического ядра.
Мы упоминаем эти вещи, чтобы установить ограничения для любых объяснений анатомии мозга. Мы дадим здесь какое-то объяснение, но оно по необходимости будет несколько расплывчатым. Делать иного рода предположения было бы просто неправомерно.
Полезно сделать некоторые предварительные замечания. В первые десятилетия этого века Дж. Паркер (G. Parker) из Йельского университета искал самую примитивную рефлекторную дугу. Такие дуги были идентифицированы у позвоночных животных; это состоящие из одного или нескольких нейронов пути, с помощью которых возбуждение, порождаемое сенсорным стимулом, действующим на некоторую часть тела, может быть проведено к эффекторной ткани и, соответственно, вызвать движение. Во времена Паркера рефлекторные дуги рассматривались как простейшие схемы, посредством которых природа объединяет клетки в нервную систему; в соответствии с этим было широко распространено мнение, что нервная система возникает тогда, когда некоторый организм приходит к необходимости иметь какую-нибудь клетку или цепочку клеток для посредничества между внешним стимулом и ответным движением животного. Со временем предполагалось установить, что у более развитых организмов эволюция нервной системы продвигалась вперед путем увеличения числа и сложности таких цепочек.
Сначала внимание Паркера привлекли эпителиальные слои некоторых морских гидроидных полипов и актиний, потому что иногда они содержали клетки, которые выглядели (если были подходящим образом окрашены) как нейроны. У основания такой клетки Паркеру удалось разглядеть начало нити, весьма похожей на аксон, которая, подходя к мышечному волокну, разветвлялась. Паркер не был уверен в том, что тут образовывался контакт, но предположил, что между аксоном и мышечным волокном устанавливается какая-то связь. Конечно, он был прав, но это устройство весьма примитивно; его схему можно было бы назвать однонейронной нервной системой, поскольку вся линия проведения состоит всего лишь из одной клетки. Что такая нервная система будет делать в ответ на стимул, столь же предсказуемо, как и то, что будет делать дверной звонок, если нажать на кнопку. В то же время относительно нервной системы человека ясно, что поведение, на которое она делает способными человеческие существа, самое что ни на есть непредсказуемое.
Очевидно, что-то должно вмешиваться в работу механизма дверного звонка, и потому Паркер исследовал ситуацию у несколько более сложных организмов. В эпителиальном слое у некоторых полипов и медуз он обнаружил нейронные структуры, сходные с найденными им ранее. Однако под эпителием он теперь нашел дополнительные нейроны, которые вместе образовали широко разветвляющуюся сеть. Таким образом, нервная система этой второй группы организмов оказалась усложненной : нейроны эпителиального слоя образовывали контакты с субэпителиальной сетью, а клетки этой сети в свою очередь образовывали контакты с сократимыми тканями в глубине организма. Следовательно, уже можно было говорить о двухнейронной нервной системе, в которой сенсорные нейроны (у этих простых созданий нейроны лежат вблизи поверхности и находятся в непосредственном контакте с окружающей средой) связаны с мотонейронами (нейронами, которые образуют контакты с эффектерными клетками, в данном случае - сократимыми клетками, и, значит, по существу, с мышечными волокнами).
Остается ли эта сеть в высшей степени предсказуемой? По-видимому, нет. Предположим, что мотонейроны связаны друг с другом и на вход каждого из них поступают не только сообщения, идущие из окружающей среды через посредство сенсорных нейронов, но и сообщения от соседних мотонейронов. Вообразим далее, что некоторые из этих сообщений могут быть возбуждающими, т.е. заставляют данный мотонейрон с большей готовностью генерировать и передавать свои собственные сигналы в ответ на поступление других сигналов, и что другие сообщения могут быть тормозными. В таких условиях приходится решать вот какую задачу: чтобы предсказать, что будет делать некоторый нейрон в ответ на различные входные сигналы, нужно алгебраически просуммировать возбуждающие и тормозные сообщения, которые на нем конвергируют.
Возможно, что такое двухнейронное устройство позволяет облагодетельствованной природой медузе быть более непредсказуемой в своем поведении, чем актинии и другие организмы с однонейронной нервной системой. Однако затем следует дальнейшее достижение, и оно тоже обнаружено у очень примитивных организмов - некоторых других меду:». В каком-то смысле это высшее достижение, так как и нервная система таких медуз, и нервная система чело века - обе состоят по существу только из трех классов нейронов. У этих медуз, как и у человека, сенсорные нейроны, как правило, больше не связаны непосредственно с мотонейронами. Между этими двумя элементами развивается барьер из нейронов, которые имеют взаимосвязи не только с мотонейронами, но и друг с другом.
Правда, этот третий и последний шаг, возможно, уже был сделан всеми организмами, которые имеют субэпителиальную сеть нервных клеток. Выше, при рассмотрении двухнейронной нервной системы, предполагалось, что все клетки, составляющие этот слой, - мотонейроны, т.е. клетки, иннервирующие эффекторные ткани. Однако в действительности такие связи могут устанавливать только некоторые из многих субэпителиальных клеток. Остальные могут располагаться в сплетении таким образом, что получают на вход сингалы от сенсорных нейронов эпителия, а сообщаются лишь с другими нейронами того же типа или с мотонейронами, но не с эффекторными структурами. Не являясь ни сенсорными, ни моторными, они служат посредниками при проведении сигнала по сенсомоторному пути.
Короче, здесь тоже имеются промежуточные (вставочные) нейроны. Хотя трехнейронную организацию трудно вычленить в диффузной нейронной сети, она широко представлена на более поздних стадиях эволюции; у животных, более высоко развитых, чем медузы, диффузная субэпителиальная нервная сеть концентрируется либо в последовательность сегментарных ганглиев (скоплений нейронов), либо в единую несегментированную центральную нервную систему. Таким образом, критическим моментом явилось изобретение «великой промежуточной сети» - барьера из промежуточных нейронов, которые вклинились между сенсорными нейронами и мотонейронами, на раннем этапе эволюции животных.
Насколько далеко зашел прогресс в развитии этой промежуточной сети на сегодняшний день, легче всего показать с помощью некоторых цифр. Начнем с вопроса о том, сколько нейронов в центральной нервной системе человека. В качестве ответа часто можно услышать: порядка 1010. Это результат подсчета вставочных нейронов и мотонейронов, ибо случилось так, что настоящие сенсорные нейроны лежат не в центральной нервной системе, а в ганглиях, которые расположены вне головного и спинного мозга. Это весьма привлекательная цифра, которую легко запоминать и использовать. И все же имеются еще классы нейронов, которые столь малы и столь плотно упакованы, что оценить их число трудно или невозможно. Один из таких классов - это клетки-зерна. Как раз в одной из частей головного мозга - мозжечке - находится так много клеток-зерен, что величина 1010 нейронов для всей центральной нервной системы становится сомнительной. Общее число вполне может быть на порядок, а возможно, и на два порядка больше.
Все же примем на минуту, что общее число действительно 1010. Сколько же из этих клеток мотонейроны? Ответ таков, что их, оказывается, не может быть больше двух или трех миллионов. Эта цифра представляется смущающе малой в свете того факта, что только через мотонейроны работа нервной системы может выразиться в движении. Более того, такой ответ заставляет предполагать, что на мотонейроны должно конвергировать неправдоподобно большое число влияний; другими словами, это заставляет предполагать, что типичный мотонейрон должен образовывать синаптические связи с огромным числом аксонов, исходящих от равно огромного числа нейронов великой промежуточной сети.
Полагают, что на поверхности типичного мотонейрона в спинном мозгу человека имеется что-то около 10000 синаптических контактов, из которых около 2000 - на клеточном теле и 8000 - на дендритах - отростках, ветвящихся локально, в отличие от единственного аксона. Это не означает, что на данный нейрон посягают 10000 вставочных нейронов: когда такие нейроны устанавливают связи с какой-то клеткой, они имеют тенденцию образовывать множественные синаптические контакты. Однако все равно получается, что средний мотонейрон должен подвергаться массированному воздействию: число 1010 для нейронов центральной нервной системы подразумевает, что на каждый мотонейрон приходится от 3000 до 5000 нейронов великой промежуточной сети.
Вот какое последнее заключение должно быть выведено из цифр, которые мы процитировали: весь головной и спинной мозг человека - это великая промежуточная сеть, за исключением явно немногих миллионов мотонейронов. А когда великая промежуточная сеть начинает включать 99,98 процента всех нейронов, составляющих центральную нервную систему, этот термин теряет большую часть своего смысла: он начинает отражать саму ту сложность, с которой каждый должен столкнуться при попытках постигнуть нервную систему. Этот термин остается полезным только как напоминание о том, что большая часть нейронов мозга не принадлежит ни к сенсорным, ни к моторным. Строго говоря, они вставлены между чисто сенсорной частью организма и чисто моторной его частью. Они являются компонентами вычислительной сети.
Вторая группа предварительных замечаний касается общей анатомии центральной нервной системы. Отметим, в частности, что у всех видов позвоночных головной и спинной мозг сначала появляются у зародыша всего лишь в виде трубки толщиной в один клеточный слой. В передней части этой нервной трубки, которая в конечном итоге будет заключена в череп, вскоре появляются три утолщения - первичные мозговые пузыри. Это ромбэнцефалон, или задний мозг; мезэнцефалон, или средний мозг; и прозэнцефалон, или передний мозг. («Энцефалон» происходит от греческого «внутри головы».)
Из этих трех первичных пузырей передний пузырь является самым продуктивным по числу образующихся отделов и дальнейшей дифференцировке. Основным событием его эмбрионального развития является образование камер с левой и правой стороны. Они превращаются в полушария большого мозга; эту часть мозга часто называют также конечным мозгом (телэнцефалон); у некоторых видов он имеет скромные размеры, у других - чрезвычайно большие. Между полушариями лежит непарный центральный отдел переднего мозга, от которого отпочковались полушария. Он имеет название промежуточный мозг, или диэнцефалон.
Эти два среза фиксированного препарата мозга человека иллюстрируют сложность внутреннего строения мозга. Срезы были обработаны краской, которая избирательно окрашивает в черный цвет жировую миелиновую оболочку нервных волокон; в результате белое вещество предстает как черное, а серое (состоящее преимущественно из клеточных тел) остается неокрашенным. Пустые пространства на этих срезах указывают положение желудочков-заполненных жидкостью полостей внутри мозга. Верхний рисунок. Срез проходит примерно посередине мозга и захватывает кору больших полушарий, гиппокамп и таламус. Нижний рисунок. Срез сдвинут кзади и проходит через ствол мозга. Как сделаны срезы и где располагаются упомянутые структуры, поясняет следующий рисунок. (Препарат из коллекции профессора П. Яковлева из Гарвардской медицинской школы.)
Мозг человека разрезан на пять частей и раскрыт как книжка, что позволяет проследить связи между наружным и внутренним строением. Два сечения, представленные на предыдущем рисунке, обозначены буквами А и Б.
В процессе развития из переднего мозга выделяется еще одна пара камер-глазные пузыри. Их имеют даже незрячие животные, а у животных, способных видеть, они удлиняются в направлении к поверхности головы и в конечном счете превращаются в две сетчатки, соединенные с основанием переднего мозга своими стеблями-зрительными нервами. Наконец, из внутренней поверхности первичного переднего мозга развивается непарная срединная камера, которая дифференцируется и образует заднюю долю гипофизарного комплекса.
Два метода окрашивания дают возможность получить взаимно дополняющие друг друга изображения внутреннего строения мозга крысы. А. Показано сечение, проходящее чуть в стороне от срединной плоскости параллельно ей; срез был обработан по методу Ниссля, который позволяет избирательно окрашивать клеточные тела. Следовательно, каждая точка на микрофотографии соответствует какой-то отдельной клетке. Б. Срез обработан по методу Лойе (Loyez), который позволяет избирательно окрашивать миелинизированные волокна, оставляя тела клеток непрокрашенными, благодаря чему выделяются приводящие пути. В. Схема, на которой показаны различные структуры мозга.
На нижнем рисунке на стр. 92 показан результат этого эмбрионального роста. Такая схема в общем выдерживается для всех млекопитающих; она изображает полностью сформированную центральную нервную систему млекопитающего, разбитую на несколько отделов. Слева - спинной мозг (на рисунке - сильно укороченный). Вправо от него, без какой-либо резкой границы, отходит задний мозг - самый нижний отдел головного мозга. Его дорсальная часть (часть, наиболее близкая к спине животного) - придаток, называемый мозжечком.
За задним мозгом идет средний мозг, который у млекопитающих включает две пары структур, область из четырех бугров, известную под названием четверохолмия, крыши среднего мозга, или тектума («тектум» в переводе - «крыша»). Нижняя пара структур называется нижним двухолмием, верхняя пара - верхним двухолмием. Кроме этого, средний мозг дает мало оснований для подразделения, по крайней мере в продольном направлении. В сущности это довольно короткий участок человеческого мозга.
Далее идет центральный непарный отдел переднего мозга - промежуточный мозг. Его дорсальные две трети - это таламус. Остальная часть - гипоталамус. (Несколько в стороне от гипоталамуса есть третий отдел промежуточного мозга - субталамус, самую удивительную группу клеток которого - субталамическое ядро - мы упоминали вначале. Включение его усложнило бы рисунок.) Гипоталамус характеризуется наличием железистого придатка, называемого гипофизарным комплексом. Он также продолжается в переднем направлении, переходя в перегородку - структуру, которую, несмотря на ее расположение, лучше всего классифицировать как принадлежащую к промежуточному мозгу. Остальная часть переднего мозга - конечный мозг, мозговые полушария. В мозгу млекопитающих это наибольшая часть, намного превосходящая другие, и у многих видов млекопитающих оболочка полушарий - мозговой плащ, или кора большого мозга, - испещрена извилинами (gyri) и бороздами (sulci). У основания каждого полушария имеется простирающаяся вперед структура, которая полностью состоит из серого вещества (коры), хотя это и кора с очень примитивной клеточной структурой. Ее вздутый передний конец - обонятельная луковица, а ее ножка - обонятельный стебель; только та часть коры, которая лежит непосредственно под остальной частью полушария, является настоящей обонятельной корой. Вторая большая часть коры мозга у млекопитающих находится там, где мозговой плащ подворачивается и образует сложные складки, которые в поперечном сечении напоминают орнамент в стиле рококо. Эта замечательная структура известна под названием гиппокампа.
Головной и спинной мозг человека и других млекопитающих можно подразделить на отделы, исходя из данных анатомии, эмбриологии и клеточной организации. А. Мозг человека изображен таким образом, что его внутренние структуры просматриваются сквозь «прозрачные» наружные слои мозжечка. Б. Обобщенная схема мозга млекопитающего; эта схема условно принята для всех остальных рисунков данной статьи. Соответствующие структуры на обоих рисунках окрашены одинаково. Обычно принято делить мозг на передний, средний и задний. Задний мозг включает мозжечок. К среднему мозгу относятся бугорки четверохолмия - нижнее и верхнее двухолмия. Строение переднего мозга более сложно. Его наружная часть - полушарие, поверхность которого - складчатый пласт мозговой коры, включающей гиппокамп, новую кору и обонятельные поля. Внутри полушария располагаются миндалина и полосатое тело; последнее подразделяется на бледный шар и стриатум, включающий хвостатое ядро и чечевицеобразное ядро. Остальная часть переднего мозга - промежуточный мозг: верхние его две трети составляет таламус (который имеет множество подразделении), а нижнюю треть - гипоталамус (который соединяется с гипофизарным комплексом).
После выделения перечисленных частей остается еще одна часть коры большого мозга млекопитающих, которая имеет большую протяженность и чрезвычайно сложное строение; у человека и других приматов она, согласно оценкам, содержит не менее 70 процентов всех нейронов центральной нервной системы. Это новая кора - самая поздняя кора в процессе эволюции. Мы приобрели ее благодаря расхождению путей эволюции: после рептилий одна линия животных развивалась, усовершенствуя прежний тип, и дошла до птиц, а другая - более «авантюрная» - приобрела новую кору и дошла до млекопитающих. Таким образом, с чисто филогенетической точки зрения птицы воплощают в себе логическое завершение традиционного развития мозга, а млекопитающие представляют собой отклонение, поскольку они не имеют в своей родословной птиц. В результате одного из многочисленных разветвлений эволюции млекопитающих появились приматы - отряд, в котором новая кора достигает своего максимального развития. Мы, человеческие существа, пожинаем все плоды этого развития, возможно, включая и психопатологию.
В глубине каждого полушария большого мозга млекопитающих имеется несколько скоплений серого вещества. Одно из них - это миндалина, которая лежит под обонятельной корой. Другое - полосатое тело, находящееся в самой середине полушария. Это тело в свою очередь подразделяется на две части, которые различаются по клеточному составу. Первая из них - это внутренняя зона, называемая палеостриатумом, или бледным шаром. Вторая зона - наружная; она известна под названием стриатум.
Вернемся теперь к схеме связей в центральной нервной системе млекопитающих. Начнем с идентификации сенсорных нейронов, типа тех, которые Паркер нашел в эпителиальном слое медуз. Однако у позвоночных расположение сенсорных нейронов совсем иное. Известен всего один пример, где сенсорный нейрон является также рецептором на поверхности тела: только обонятельные эпителиальные клетки в слизистой крыши носа контактируют с внешней средой. Все другие сенсорные нейроны в теле позвоночных надежно упрятаны под поверхность и находятся в ганглиях, располагающихся вдоль спинного мозга по всей его длине, или в аналогичных ганглиях, лежащих в стороне от мозга. (У позвоночных термин «ганглий» сохранен для скоплений нейронов вне центральной нервной системы.) У каждого сенсорного нейрона есть аксон, который делится на две части: одна часть идет в центральную нервную систему, а другая иннервирует периферические структуры.
Соматосенсорная информация, например сообщения о кожных ощущениях, передается по нескольким путям спинного мозга. В левой части схемы показана пара репрезентативных сенсорных нейронов, доставляющих сигналы от периферических сенсорных рецепторов в спинной мозг. Отсюда один путь сразу же ответвляется к мотонейронам (сплошные треугольники), волокна которых идут за пределы мозга к скелетным мышцам. Все другие пути сначала идут в скопления вторичных сенсорных нейронов, располагающиеся либо в той же самой области спинного мозга, либо в его верхней части, в ядрах дорсального столба. Путь, называемый медиальным лемниском, поднимается вверх от ядер дорсального столба к вентральному ядру таламуса, которое в свою очередь посылает волокна в соматосенсорную зону коры. Второй путь, называемый спино-таламическим трактом, поднимается к переднему мозгу из скоплений вторичных сенсорных клеток по всей длине спинного мозга, по ходу раздавая в стороны часть своих волокон. Малая доля волокон спино-таламического тракта в конечном счете достигает вентрального ядра. Скопления вторичных сенсорных клеток также посылают свои волокна в мозжечок.
На приведенном здесь рисунке, одна из таких клеток - назовем ее первичным сенсорным нейроном - посылает свой аксон в спинной мозг, доставляя туда сенсорные сообщения о таких событиях, как прикосновение к коже, движение сустава или сокращение мышцы. Эти сообщения не сразу поступают на мотонейроны; свои первые синаптические контакты сенсорный нейрон устанавливает с так называемыми вставочными нейронами.
Однако имеется одно исключение. Это моносинаптическая рефлекторная дуга, образуемая боковой ветвью первичного сенсорного волокна, идущей «напролом» и устанавливающей прямой синаптический контакт с мотонейроном. Сначала это кажется обескураживающим: всего лишь несколькими абзацами выше мы отмечали, что после самых ранних ступеней эволюции нервной системы мотонейроны больше не утруждают себя обработкой сырых данных. Мы предположили, что вместо этого они теперь получают краткий итог обработки информации («дайджест») нейронами великой промежуточной сети. Следовательно, моносинаптическая дуга может рассматриваться как очень примитивный тип нервной сети; с другой стороны, ее можно считать относительно новой: по-видимому, ее вновь открыли только наземные животные. В конце концов, воздух и земля - самые суровые среды; для горного козла один неверный шаг может оказаться роковым. В противоположность этому рыба может без всякого риска для себя сделать любое количество аналогичных ошибочных движений. Рыбы прекрасно уравновешены в воде, и сила тяжести для них далеко не так обременительна и враждебна. Таким образом, именно наземное, а не водное существование, по-видимому, требует наличия высоконадежных рефлекторных систем для удержания равновесия и, в частности, наличия пути, по которому мышца может сигнализировать соответствующим мотонейронам (и только им), что она чрезмерно растянута силой тяжести.
Моносинаптические рефлекторные дуги никогда не обнаруживаются за пределами таксах корректирующих механизмов. Так что короткие цепи между сенсорным входом и моторным выходом оказываются представленными в ничтожно малом числе. Подавляющее большинство первичных сенсорных волокон млекопитающих входит в великую промежуточную сеть и синаптически контактирует с клетками, составляющими группу, которую мы будем называть группой вторичных сенсорных клеток: это нейроны, стоящие первыми в цепи приема первичных сенсорных сигналов. Оттуда многие пути более или менее прямо направляются к мотонейронам. Все они в совокупности могут быть названы локальным рефлекторным путем, если не упускать из виду, что слово «локальный» может ввести в заблуждение, так как есть несколько рефлексов, которые вовлекают в работу весь спинной мозг по всей его длине, но тем не менее относятся к локальным, поскольку не выходят за его пределы. Первое звено в локальном рефлекторном пути - это некоторый нейрон из группы вторичных сенсорных клеток. Многие из таких клеток сами не образуют контактов с мотонейронами; вместо этого они синаптически переключаются на некоторые другие нейроны великой промежуточной сети, и только уже эти последние нейроны, наконец, замыкают дугу.
Другие пути состоят из аксонов, не идущих к мотонейронам. Возьмем мозжечковые каналы: из скоплений вторичных сенсорных нейронов заднего и спинного мозга многие аксоны восходят прямо к мозжечку. Показанный на рисунке на стр. 94 аксон, который идет таким образом, берет свое начало в группе вторичных сенсорных клеток спинного мозга и потому называется спино-мозжечковым волокном. (Слова «аксон» и «волокно» в нейроанатомии используются как синонимы.)
Третий путь - это лемнисковый путь. Слово «лемниск» в переводе с латинского - лента (петля); здесь им обозначаются пучки волокон, которые берут начало в группах вторичных сенсорных клеток и поднимаются к переднему мозгу, в частности к таламусу. На рисунке (стр. 94) показано, как один такой пучок идет по центру спинного мозга. В действительности он проходит латеральнее: упрощенную иллюстративную схему трудно сделать топографически точной. Этот пучок назван спино-таламическим трактом, хотя только одно из трех его репрезентативных волокон изображено как оканчивающееся в таламусе. Два других волокна сопровождают его на некотором расстоянии, а затем, так сказать, «совершают непредвиденную посадку»: на рисунке показано, что оба оканчиваются на нейронах заднего мозга, хотя с таким же успехом они могли бы окончиться несколько далее по ходу - в среднем мозгу. Важно то, что из волокон спино-таламического тракта лишь небольшая доля действительно достигает таламуса. Тем не менее тракт назван в честь этого преуспевшего меньшинства, которое оканчивается в специфической части таламуса - вентральном ядре. Здесь волокна образуют синапсы с таламическими нейронами, аксоны которых идут, не прерываясь, в специализированное поле новой коры, называемое соматосенсорной корой.
Заметим, что на пути от первичного сенсорного нейрона до новой коры в данном случае насчитывается только два синаптических переключения. Первое - в спинном мозгу между первичным сенсорным волокном и нейроном из группы вторичных сенсорных клеток. Второе переключение - в промежуточном мозгу, между волокнами лемниска и нейронами вентрального ядра таламуса. Однако то, что происходит в новой коре, можно назвать синаптическим катаклизмом. В новой коре в реакцию на пришедший сигнал уже на первом этапе вовлекаются сотни, а то и тысячи нейронов. А действуя через синаптические связи, эти первые нейроны, возбужденные сигналом, вовлекают бесчисленное множество следующих.