Библиотека    Новые поступления    Словарь    Карта сайтов    Ссылки





предыдущая главасодержаниеследующая глава

13.Сафарян В. "ИИ как эмпирическая проблема. Концепция понимания Пенроуза"

Теория вычислительных систем - дисциплина эмпирическая. Можно было бы назвать ее экспериментальной наукой, но, подобно астрономии, экономике и геологии, некоторые из ее оригинальных форм испытаний и наблюдений невозможно втиснуть в узкий стереотип экспериментального метода. Тем не менее это эксперименты. Конструирование каждого нового компьютера - это эксперимент.

Приближая ИИ к масштабам науки, необходимо решать важные философские проблемы, особенно относящиеся к эпистемологии, или вопрос о том, как интеллектуальная система "познает" свой мир. Эти проблемы варьируются от вопроса о том, что есть предметом изучения искусственного интеллекта, до более глубоких, таких как обоснованность и применимость гипотезы о физической символьной системе.

ИИ- это дисциплина, исследующая закономерности, лежащие в основе разумного поведения, путем построения и изучения артефактов, предопределяющих эти закономерности.

Согласно этому определению искусственный интеллект в меньшей степени представляет собой теорию закономерностей, лежащих в основе интеллекта, и в большей - эмпирическую методологию создания и исследования всевозможных моделей, на которые эта теория опирается. Этот вывод проистекает из научного метода проектирования и проведения экспериментов с целью усовершенствования текущей модели и постановки дальнейших экспериментов. Однако это определение, как и сама область ИИ, бросает вызов многовековому философскому мракобесию в вопросе природы разума. Оно дает людям, которые жаждут понимания альтернативу религии, суевериям, картезианскому дуализму, пустым теориям нового времени или поискам разума в каких-то не открытых еще закоулках квантовой механики. Если наука, исследующая искусственный интеллект, и внесла какой-то вклад в человеческие знания, то он подтверждает следующее. Разум - это не мистический эфир, пронизывающий людей и ангелов, а, скорее, проявление принципов и законов, которые можно постичь и применить в конструировании интеллектуальных машин. Необходимо отметить, что наше пересмотренное определение не касается интеллекта, оно определяет роль искусственного интеллекта в изучении природы и феномена разумности.

Исторически главенствующий подход к искусственному интеллекту включал построение формальных моделей и соответствующих им механизмов рассуждений, основанных на переборе. Ведущим принципом ранней методологии искусственного интеллекта являлась гипотеза о физической символьной системе, впервые сформулированная Ньюэллом и Саймоном. Эта гипотеза гласит следующее.

Физическая система проявляет разумное в широком смысле поведение тогда и только тогда, когда она является физической символьной системой.

Достаточность означает, что разумность может быть достигнута каждой правильно организованной физической символьной системой.

Необходимость означает, что каждый агент, проявляющий разумность в общепринятом смысле, должен являться физической символьной системой. Необходимое условие этой гипотезы требует, чтобы любой разумный агент, будь-то человек, инопланетянин или компьютер, достигал разумного поведения путем физической реализации операций над символьными структурами.

Разумное в широком смысле поведение означает действия, характерные для поведения человека. Физически ограниченная система ведет себя соответственно своим целям, приспосабливаясь к требованиям окружающей среды.

Гипотеза о физической символьной системе привела к трем важнейшим принципам методологии: использованию символов и символьных систем в качестве средства для описания мира; разработке механизмов перебора, в особенности эвристического, для исследования границ потенциальных умозаключений таких систем; отвлеченности когнитивной архитектуры. Имеется в виду предположение о том, что правильно построенная символьная система может проявлять интеллект в широком смысле независимо от средств реализации. Наконец, с этой точки зрения ИИ становится эмпирической и конструктивной дисциплиной, которая изучает интеллект, строя его действующие модели.

С точки зрения символьных систем использование символов в ИИ уходит далеко за пределы такой семантики. Символами здесь представляются все формы знаний, опыта, понятий и причинности. Все подобные конструктивные работы опираются на тот факт, что символы вместе со своей семантикой могут использоваться для построения формальных систем. Они определяют язык представления. Эта возможность формализовать символьные модели принципиальна для моделирования интеллекта как выполняемой компьютерной программы.

Математика формальных систем позволяет говорить о таких вещах, как непротиворечивость, полнота и сложность, а также обсуждать организацию знаний.

Эволюция формализмов представления позволяет установить более сложные семантические отношения. Например, системы наследования формируют семантическую теорию таксономического знания и его роли в интеллекте. Формально определяя наследование классов, такие языки облегчают построение интеллектуальных программ и предоставляют удобно тестируемые модели организации возможных категорий интеллекта.

Схемы представления и их использование в формальных рассуждениях тесно связаны с понятием поиска. Поиск - это поочередная проверка узлов в априори семантически описанной сети представления на предмет нахождения решения задачи или подзадач, выявления симметрии задачи и тому подобного.

Представление и поиск связаны, поскольку соотнесение задачи с конкретным представлением определяет априорное пространство поиска. Действительно решение многих задач можно значительно усложнить, а то и вовсе сделать невозможным, неудачно выбрав язык представления. Выразительным и часто цитируемым примером связи между поиском и представлением, а также трудности выбора удобного представления является задача размещения костей домино на усеченной шахматной доске. Допустим, имеется шахматная доска и набор костей домино, причем каждая закрывает ровно две клетки на доске. Положим также, что у доски не хватает нескольких клеток - на рис.1 отсутствуют верхний левый и нижний правый уголки.

Рис.1. Усеченная шахматная доска с двумя клетками, закрытыми костью домино

Задача состоит в том, чтобы установить, можно ли разместить кости домино на доске так, чтобы все поля были закрыты, и при этом каждая кость покрывала две и только две клетки. Можно попытаться решить проблему, перебрав все варианты расположения костей. Это типичный пример решения на основе поиска, который является естественным следствием представления доски в виде простой матрицы, игнорирующим такие, казалось бы, незначительные особенности, как цвет поля. Сложность подобного поиска просто невероятна. Для эффективного решения необходимо применение эвристических методов. Например, можно отсечь частные решения, которые оставляют изолированными отдельные клетки. Можно также начать с решения задачи для досок меньшего размера, таких как 2x2, 3x3, и постараться расширить решение до ситуации 8x8.

Опираясь на более сложное представление, можно получить изящное решение. Для этого нужно учесть тот факт, что каждая кость должна одновременно покрывать белую и черную клетки. На усеченной доске 32 черные клетки, но лишь 30 белых, следовательно, требуемое размещение невозможно. Таким образом, в системах, основанных на символьных рассуждениях, возникает серьезный вопрос: существуют ли представления, позволяющие оперировать знаниями с такой степенью гибкости и творческого подхода? Как может конкретное представление изменять свою структуру по мере появления новых сведений о предметной области?

Эвристика - это третий важный компонент символьного ИИ после представления и поиска. Эвристика - это механизм организации поиска среди альтернатив, предлагаемых конкретным представлением. Эвристики разрабатываются для преодоления сложности полного перебора, являющейся непреодолимым барьером на пути получения полезных решений многих классов интересных задач. В компьютерной среде, как и в человеческом обществе, интеллект нуждается в обоснованном решении "что делать дальше". На протяжении истории развития ИИ эвристики принимали множество форм.

Как ни удивительно, главную неудачу современный искусственный интеллект терпит вовсе не в тех областях, где человеческий разум может вполне самостоятельно продемонстрировать поистине впечатляющую мощь, а в вещах вполне "обыденных". Пока что ни один управляемый компьютером робот не может соперничать даже с малым ребенком в таком, например, простейшем деле, как сообразить, что для завершения рисунка необходим цветной карандаш, который валяется на полу в противоположном конце комнаты, после чего подойти к нему, взять и использовать по назначению. А с другой стороны, перед нaми имеется поразительный пример способности компьютеров к чрезвычайно эффективным действиям я имею в виду последние работы по созданию шахматных компьютеров. Шахматы, несомненно, представляют собой такой вид деятельности, в котором мощь человеческого интеллекта проявляется особенно ярко. И все же современные компьютерные системы играют в шахматы необычайно хорошо и способны выиграть у большинства шахматистов людей. Даже лучшим из шахматистов приходится сейчас нелегко, и вряд ли им удастся надолгo сохранить свое теперешнее превосходство над наиболее продвинутыми компьютерами. Существует еще несколько узких областей, в которых компьютеры могут с успехом соперничать со специалистами людьми. Kpoме тoro, необходимо упомянуть и о таких видах интеллектуальной деятельности, где способности компьютеров значительно превосходят способности людей.

Как бы то ни было, вряд ли можно утверждать, что во всех вышеперечисленных ситуациях компьютер и впрямь понимает, что именно он делает. В случае нисходящей организации причина успешной работы системы состоит не в том, что что-то такое понимает сама система, а в том, что в управляющую действиями системы программу было изначально заложено понимание, присущее программистам. Что же касается восходящей организации, то не совсем ясно, есть ли здесь вообще необходимость в каком бы то ни было специфическом понимании на системном уровне либо со стороны caмoгo устройства, либо со стороны программистов. Разумеется, не всегда возможно однозначно определить, что же на самом деле означает термин "понимание", вследствие чего кто-то может утверждать, что в его системе обозначений такие компьютерные системы и в самом деле демонстрируют cвoeгo рода "понимание".

Неужели все дело лишь в вычислительных способностях, в скорости и точности работы, в объеме памяти или, быть может, в конкретном способе "связи" отдельных структурных элементов? С другой стороны, не может ли наш мозг выполнять какие-то действия, которые вообще невозможно описать через вычисление? Каким образом можно поместить в такую вычислительную картину нашу способность к осмысленному осознанию счастья, боли, любви, какого-либо эстетичеcкoгo переживания, желания, понимания и т. п.? Будут ли компьютеры будущего действительно обладать разумом? Влияет ли обладание сознательным разумом на поведение индивида, и если влияет, то как именно? Имеет ли вообще смысл говорить о таких вещах на языке научных терминов; иными словами, обладает ли наука достаточной компетентностью для Toro, чтобы рассматривать вопросы, относящиеся к сознанию человека?

Мне кажется, что можно говорить, как минимум, о четырех различных точках зрения или даже крайностях, которых разумный индивид может придерживаться в отношении данного вопроса:

А. Всякое мышление есть вычисление; в частности, ощущение осмысленного сознания есть не что иное, как результат выполнения соответствующего вычисления.

В.Осознание представляет собой характерное проявление физической активности мозга; хотя любую физическую активность можно моделировать посредством той или иной Совокупности вычислений, численное моделирование как таковое не способно вызвать осознание.

С.Осознание является результатом соответствующей физической активности мозга, однако эту физическую активность невозможно должным образом смоделировать вычислительными средствами.

DОсознание невозможно объяснить в физических, математических и вообще научных терминах.

Литература:

1. Пенроуз Роджер. Тени разума: в поисках науки о сознании" Москва-Ижевск, 2005.

2. Люгер, Джордж, Ф. Искусственный интеллект: стратегии и методы решения сложных проблем, 4-е издание, 2003.

3. Чернухин Ю. В. Искусственный интеллект и нейрокомпьютеры, Таганрог, 1997.

предыдущая главасодержаниеследующая глава



ПОИСК:





© Алексей Злыгостев, дизайн, подборка материалов, разработка ПО 2001–2018
Все права на тексты книг принадлежат их авторам!

При копировании страниц проекта обязательно ставить ссылку:
'Электронная библиотека по философии - http://filosof.historic.ru'
Сайт создан при помощи Богданова В.В. (ТТИ ЮФУ в г.Таганроге)