Библиотека    Новые поступления    Словарь    Карта сайтов    Ссылки





назад содержание далее

Ч.1. Гл.2. с.102-122

Глава 2. УСТАНОВЛЕНИЕ РЕАЛЬНОГО

1. Законы Ньютона

Рассмотрим теперь более подробно механистическое мировоззрение, возникшее на основе трудов Галилея, Ньютона и их преемников. Мы опишем сильные сторо­ны этого мировоззрения, укажем те аспекты природы, которые ему удалось прояснить, не обойдем молчанием и присущие ему ограничения.

Со времен Галилея одной из центральных проблем физики было описание ускорения. Самым удивитель­ным было то, что изменение в состоянии движения те­ла допускало описание в простых математических тер­минах. Ныне это обстоятельство кажется почти триви­альным. Не следует, однако, забывать о том, что ки­тайская наука, добившаяся значительных успехов во многих областях, так и не смогла дать количественную формулировку законов движения. Галилей открыл, что если движение равномерно и прямолинейно, то необхо­димость в поиске причины такого состояния движения ничуть не больше, чем в поиске причины состояния по­коя. И равномерное прямолинейное движение и покой сохраняют устойчивость сколь угодно долго — до тех пор пока не происходит что-нибудь, нарушающее их. Следовательно, центральной проблемой является пере­ход от состояния покоя к движению и от движения — к состоянию покоя или, более общо, проблема измене­ния любых скоростей. Как происходят такие измене­ния? Формулировка законов движения Ньютона осно­вана на использовании двух конвергентных направле­ний развития: одного физического (законы движения планет Кеплера и законы свободного падения тел Га­лилея) и другого математического (создание диффе-

103

ренциального исчисления, или исчисления бесконечно малых).

Как определить непрерывно изменяющуюся ско­рость? Как описать мгновенные изменения различных величин: положения тела, скорости и ускорения? Как описать состояние движения тела в любой заданный момент? Чтобы ответить на эти вопросы, математики ввели понятие бесконечно малой величины. Любая бес­конечно малая величина есть результат некоторого предельного перехода. Обычно это приращение величи­ны между двумя последовательно выбранными момен­тами времени, когда длина разделяющего их временно­го интервала стремится к нулю. При таком подходе конечное изменение разбивается на бесконечный ряд бесконечно малых изменений.

В каждый момент времени состояние движущегося тела можно задать, указав его положение — вектор r, скорость v, характеризующую «мгновенную тенденцию» r изменению положения, и ускорение а, также харак­теризующее «мгновенную тенденцию» к изменению, но уже не положения, а скорости. Мгновенные скорости и ускорения — это пределы отношений двух бесконечно малых величин: приращения r (или v) за временной интервал Dt и самого временного интервала Dt, когда Dt стремится к нулю. Такие величины называются про­изводными по времени. Со времен Лейбница их приня­то обозначать соответственно как v=dr/dt и a=dv/dt. Ускорение, будучи «производной от производной», ста­новится второй производной: a=d2r/di2. Проблема, на­ходящаяся в центре внимания всей ньютоновской фи­зики, — вычисление этой второй производной, т. е. ускорения, испытываемого в любой заданный момент материальными точками, образующими некую систему. Движение каждой из точек за конечный интервал вре­мени может быть вычислено с помощью интегрирова­ния — суммирования бесконечно большого числа бес­конечно малых приращений скорости за этот интервал времени. В простейшем случае ускорение а постоянно (например, если тело падает свободно, то а равно ус­корению свободного падения g). В общем случае ус­корение изменяется со временем, и задача физика со­стоит в том, чтобы точно установить характер этого из­менения.

На языке Ньютона найти ускорение означает опре-

104

делить различные силы, действующие на точки рас­сматриваемой системы. Второй закон Ньютона (F=ma) утверждает, что сила, приложенная к любой материальной точке, пропорциональна производимому ею ускорению. В случае системы материальных точек задача несколько усложняется, так как силы, действую­щие на заданное тело, в каждый момент времени за­висят от относительных расстояний между телами сис­темы и поэтому изменяются со временем в результате ими же производимого движения.

Любая задача динамики представима в виде систе­мы дифференциальных уравнений. Мгновенное состоя­ние каждого из тел системы описывается как мгновен­ное состояние материальной точки и определяется за­данием его положения, скорости и ускорения, т. е. пер­выми и вторыми производными от вектора r, задающе­го положение тела. В каждый момент времени система сил, зависящая от расстояний между точками системы (т. е. от r), однозначно определяет ускорение каждой точки. Ускоренное движение точек приводит к измене­нию расстояний между ними и, следовательно, системы сил, действующих на них в следующий момент.

Если запись дифференциальных уравнений означа­ет постановку динамической задачи, то их интегрирова­ние соответствует решению этой задачи. Интегрирова­ние сводится к вычислению траекторий r(t), в которых содержится вся информация, существенная для дина­мики. Она дает полное описание динамической систе­мы.

В этом описании можно выделить два элемента: положения и скорости всех материальных точек в один момент времени (часто называемые начальными усло­виями) и уравнения движения, связывающие динами­ческие силы с ускорениями. Интегрирование уравне­ний движения развертывает начальное состояние в по­следовательность состояний, т. е. порождает семейство траекторий тел, образующих рассматриваемую систему.

Триумфом ньютоновской науки явилось открытие универсальности гравитации: одна и та же сила «все­мирного тяготения», или гравитации, определяет и дви­жение планет и комет в небе, и движение тел, падаю­щих на поверхность Земли. Из теории Ньютона следу­ет, что между любыми двумя материальными телами действует одна и та же сила взаимного притяжения.

105

Таким образом, ньютоновская динамика обладает двоякой универсальностью. Математическая формули­ровка закона всемирного тяготения, описывающая, ка­ким образом стремятся сблизиться любые две массы, не связана ни с каким масштабом явлений. Закон все­мирного тяготения одинаково применим к движению атомов, планет или звезд в галактиках.

Любое тело, каковы бы ни были его размеры, обла­дает массой и действует как источник ньютоновских сил тяготения.

Поскольку между любыми двумя массами возника­ют силы взаимного притяжения (на каждое из двух тел с массами т и т', находящихся на расстоянии r друг от друга, со стороны другого тела действует сила притяжения, равна kmm'/r2, где k — ньютоновская гра­витационная постоянная; k=6,67 Н?м2/кг2), то един­ственной истинно динамической системой является только Вселенная в целом. Любую локальную динами­ческую систему, например нашу планетную систему, можно определить лишь приближенно, пренебрегая си­лами, малыми в сравнении с теми, действие которых мы рассматриваем.

Следует подчеркнуть, что для произвольно выбран­ной динамической системы законы движения всегда представимы в виде F=та. Помимо гравитации, мо­гут быть и действительно были открыты другие силы, например силы взаимного притяжения и отталкивания электрических зарядов. Каждое такое открытие изме­няет эмпирическое содержание законов движения, но не затрагивает их формы. В мире динамики изменение отождествляется с ускорением (как положительным — в случае разгона, так и с отрицательным — в случае торможения). Интегрирование законов движения по­зволяет найти траектории, по которым движутся части­цы. Следовательно, законы изменения, или влияния времени на природу, должны быть как-то связаны с характеристиками траекторий.

К числу основных характеристик траекторий отно­сятся регулярность, детерминированность и обрати­мость. Мы уже знаем, что для вычисления любой тра­ектории, помимо известных законов движения, необхо­димо эмпирически задать одно мгновенное состояние системы. Общие законы движения позволяют вывести из заданного начального состояния бесконечную серию

106

состояний, проходимых системой со временем, подобно тому, как логика позволяет выводить заключения из исходных посылок. Замечательная особенность траек­торий динамической системы состоит в том, что, коль скоро силы известны, одного-единственного состояния оказывается достаточно для полного описания систе­мы — не только ее будущего, но и прошлого. Следова­тельно, в любой момент времени все задано. В динами­ке все состояния эквивалентны: каждое из них позволя­ет вычислить остальные состояния вместе с траектори­ей, проходящей через все состояния как в прошлом, так и в будущем.

«Все задано». Этот вывод классической динамики, как неоднократно подчеркивал Бергсон, характеризует описываемую динамикой реальность. Все задано, но вместе с тем и все возможно. Существо, способное уп­равлять динамической системой, может вычислить нужное ему начальное состояние так, чтобы система, будучи предоставленной самой себе, «спонтанно» пере­шла в любое заранее выбранное состояние в заданный момент времени. Общность законов динамики уравнове­шивается произволом в выборе начальных условий.

Обратимость динамической траектории в явном виде формулировали все основатели динамики. Напри­мер, когда Галилей или Гюйгенс описывали, к чему приводит эквивалентность причины и действия, посту­лированная ими как основа математизации движения, они прибегали к мысленным опытам, в частности к опыту с упругим отражением шарика от горизонталь­ной поверхности. В результате мгновенного обращения скорости в момент соударения такое тело вернулось бы в начальное положение. Динамика распространяет это свойство (обратимость) на все динамические измене­ния. Опыт с шариком — один из первых мысленных опытов в истории современной науки — иллюстрирует одно общее математическое свойство уравнения дина­мики: из структуры уравнений динамики следует, что если обратить скорости всех точек системы, то система «повернет вспять» — начнет эволюционировать назад во времени. Такая система прошла бы вновь через все состояния, в которых она побывала в прошлом. Дина­мика определяет как математически эквивалентные такие преобразования, как обращение времени t ® —t и обращение скорости v ® —v. Изменения, вызванные в

107

динамической системе одним преобразованием — обра­щением времени, могут быть компенсированы другим преобразованием — обращением скорости. Второе пре­образование позволяет в точности восстановить началь­ное состояние системы.

Выяснилось, однако, что с присущим динамике свойством обратимости связана определенная труд­ность, все значение которой было в должной мере осознано лишь после создания квантовой механики: воздействие и измерение принципиально необратимы. Таким образом, активная наука, по определению, ле­жит за пределами идеализированного обратимого мира, который она описывает. С более общей точки зрения обратимость можно рассматривать как своего рода символ «странности» мира, описываемого динамикой. Всякий знает, какие нелепости возникают на экране, если пустить киноленту от конца к началу: сгоревшая дотла спичка вспыхивает ярким огнем и, пылая, пре­вращается в полномерную спичку с нетронутой серной головкой, осколки разбитой вдребезги чернильницы са­ми собой собираются в целую чернильницу, внутрь ко­торой чудесным образом втягивается лужица пролитых было чернил, толстые ветви на дереве на глазах утон­чаются, превращаясь в тоненькие молодые побеги. В мире классической динамики все эти события счита­ются столь же вероятными, как и события, отвечающие нормальному ходу явлений.

Мы так привыкли к законам классической динами­ки, которые преподаются нам едва ли не с младших классов средней школы, что зачастую плохо сознаем всю смелость лежащих в их основе допущений. Мир, в котором все траектории обратимы, — поистине стран­ный мир. Не менее поразительно и другое допущение, а именно допущение полной независимости начальных условий от законов движения. Камень действительно можно взять и бросить с любой начальной скоростью в пределах физической силы бросающего, но как быть с такой сложной системой, как газ, состоящий из ог­ромного числа частиц? Ясно, что в случае газа мы уже не можем налагать произвольные начальные условия. Они должны быть исходом эволюции самой динамичес­кой системы. Это — весьма важное обстоятельство, и к его обсуждению мы еще вернемся в третьей части на­шей книги. Но каковы бы ни были ограничения, су-

108

живающие применимость классической динамики к ре­альному миру, мы и сегодня, через три столетия после ее создания, можем лишь восхищаться логической по­следовательностью и мощью методов, разработанных творцами классической динамики.

2. Движение и изменение

Аристотель сделал время мерой изменения. При этом он полностью сознавал качественное многообразие изменений, происходящих в природе. В динамике все внимание сосредоточено на изучении лишь одного типа изменения, одного процесса — движения. Качественное разнообразие происходящих в природе изменений ди­намика сводит к изучению относительного перемещения материальных тел. Время в динамике играет роль па­раметра, позволяющего описывать эти относительные перемещения. Тем самым в мире классической динами­ки пространство и время нераздельно связаны между собой (см. также гл. 9).

Изменение, рассматриваемое в динамике, интересно сравнить с концепцией изменения, принятой у атомистов, сторонников корпускулярной теории, пользовав­шейся необычайной популярностью во времена, когда Ньютон размышлял над своими законами. По-видимо­му, не только Декарт, Гассенди и Д'Аламбер, но и сам Ньютон усматривали в соударениях твердых частиц — корпускул, первопричину и скорее всего единственный источник изменения движения1. Тем не менее динами­ческое описание в корне отлично от корпускулярного. Действительно, непрерывный характер ускорения, опи­сываемого уравнениями динамики, разительно контрас­тирует с дискретными мгновенными соударениями твер­дых корпускул. Еще Ньютон заметил, что в отличие от динамики каждое столкновение твердых корпускул со­провождается необратимой убылью движения. Обрати­мо, т. е. согласуется с законами динамики, только уп­ругое столкновение, при котором сохраняется импульс, или количество движения. Но приложимо ли столь сложное понятие, как упругость, к атомам, которые, по предположению, являются мельчайшими структур­ными элементами природы?

С другой стороны, на менее техническом уровне законы динамики противоречат случайности, обычно

109

приписываемой атомным столкновениям. Еще древние философы отмечали, что любой происходящий в природе процесс допускает множество различных интерпретаций как результат движения и столкновения атомов. Одна­ко основная проблема для атомистов заключалась не в этом: их главной целью было дать описание мира без божества и законов, в котором человек свободен и мо­жет не ожидать ни кары, ни воздаяния ни от божест­венного, ни от естественного порядка. Но классическая наука была наукой инженеров и астрономов, наукой активного действия и предсказания. Чисто умозритель­ные построения, основанные на гипотетических атомах, не могли удовлетворять потребности классической нау­ки, в то время как законы Ньютона давали надежную основу для предсказания и активного действия. С при­нятием законов Ньютона природа становится законо­послушной, покорной и предсказуемой вместо того, что­бы быть хаотичной, нерегулярной и непредсказуемой. Но какова же связь между смертным, нестабильным миром, в котором атомы непрестанно сталкиваются и разлетаются вновь, и незыблемым миром динамики, в котором властвуют законы Ньютона, — единственная математическая формула, соответствующая вечной исти­не, открывающейся навстречу тавтологическому буду­щему? В XX в. мы вновь становимся свидетелями столкновения между закономерностью и случайными явлениями, конфликта, мучившего, как показал Койре, еще Декарта2. С тех пор как в конце XIX в. — в свя­зи с появлением кинетической теории газов — атомный хаос вновь вошел в физику, проблема взаимосвязи ди­намического закона и статистического описания стала одной из центральных в физике. Решение ее — один из ключевых элементов происходящего ныне «обновле­ния» динамики (см. часть III настоящей книги).

В XVIII в. противоречие между динамическим за­коном и статистическим описанием воспринималось как зашедшее в тупик развитие науки, и это отчасти объяс­няет тот скептицизм, с которым некоторые физики XVIII в. относились к значимости предложенного Нью­тоном динамического описания. Мы уже упоминали о том, что столкновения могут сопровождаться необрати­мой убылью движения. По мнению некоторых физиков XVIII в., в подобных неидеальных случаях «энергия» не сохраняется, а происходит ее необратимая диссипа-

110

ция (см. разд. 3, гл. 4). Это объясняет, почему атомис-ты — сторонники корпускулярной теории — не могли не видеть в динамике Ньютона идеализацию, обладаю­щую ограниченной ценностью. Физики и математики континентальной Европы, в том числе Д'Аламбер, Клеро и Лагранж, долгое время сопротивлялись обольсти­тельным чарам ньютонианства.

Куда же восходят корни ньютоновской концепции изменения? Ньютоновская концепция при вниматель­ном рассмотрении оказывается синтезом3 теории иде­альных машин, в которой передача движения осуществ­ляется без соударения или трения частей, находящихся в контакте, и науки о небесных телах, взаимодействую­щих на расстоянии. Как уже говорилось, ньютоновская концепция изменения является антитезой концепции атомизма, основанной на понятии случайных столкно­вений. Оправдывает ли это взгляды тех, кто считает, что ньютоновская динамика является разрывом в исто­рии мышления, революционным новшеством? Ведь именно это утверждают историки-позитивисты, когда описывают, как Ньютон избежал колдовских чар на­перед заданных понятий и нашел в себе достаточно смелости для того, чтобы из результатов математичес­кого исследования движения планет и свободно падаю­щих тел вывести заключение о существовании универ­сальной силы тяготения. Мы знаем и противоположное: рационалисты XVIII в. всячески подчеркивали внешнее сходство между «математическими» силами Ньютона и традиционными оккультными качествами. К счастью, эти критики не знали необычной истории, стоявшей за ньютоновскими силами! Дело в том, что за осторожным высказыванием Ньютона «Я не измышляю гипотез» относительно природы сил скрывалась страсть алхими­ка4. Теперь мы знаем, что наряду со своими математи­ческими исследованиями Ньютон на протяжении трид­цати лет изучал труды алхимиков древности и прово­дил сложнейшие лабораторные эксперименты в надеж­де, что ему удастся раскрыть тайну «философского кам­ня» и синтезировать золото.

Некоторые из современных историков науки пошли еще дальше и утверждают, что ньютоновский синтез Земли и неба был в больший мере достижением хими­ка, чем астронома. Ньютоновское всемирное тяготение «анимировало» материю и в более строгом смысле

111

превращало всю деятельность природы в наследницу тех самых сил, которые химик Ньютон наблюдал и ис­пользовал в своей лаборатории, — сил химического «сродства», способствующих или препятствующих обра­зованию каждой новой комбинации материи5. Решаю­щая роль, сыгранная орбитами небесных тел, сохраня­ет свое значение. Однако в самом начале своих занятий астрономией (около 1679 г.) Ньютон, по-видимому, ожидал найти новые силы тяготения только на небе­сах — силы, подобные химическим силам и, быть мо­жет, легче поддающиеся исследованию математически­ми методами. Шесть лет спустя математические иссле­дования .привели Ньютона к неожиданному выводу: силы, действующие между планетами, и силы, ускоряю­щие свободно падающие тела, не только подобны, но и тождественны. Тяготение не специфично для каждой планеты в отдельности, оно одно и то же для Луны, обращающейся вокруг Земли, для всех планет и даже для комет, пролетающих через солнечную систему. Ньютон поставил перед собой задачу открыть в небе силы, подобные химическим силам: специфические сродства, различные для различных соединений, наде­ляющие каждое химическое соединение качественно дифференцированной способностью вступать в реакции. Но в результате своих исследований он обнаружил уни­версальный закон, применимый, как подчеркивал сам Ньютон, ко всем явлениям природы — химическим, ме­ханическим или небесным.

Таким образом, ньютоновский синтез с полным ос­нованием можно считать сюрпризом. Именно в память о столь неожиданном, поразительном открытии научный мир видит в имени Ньютона символ современной нау­ки. Нельзя не удивляться тому, что для раскрытия ос­новного кода природы потребовался единичный твор­ческий акт.

В течение долгого времени эта неожиданная «разго­ворчивость» природы, этот триумф английского Моисея были источником интеллектуального конфуза для кон­тинентальных рационалистов. Свершение Ньютона они считали чисто эмпирическим открытием, которое с та­ким же успехом могло быть эмпирически опровергнуто. В 1747 г. Эйлер, Клеро и Д'Аламбер, несомненно при­надлежавшие к числу величайших ученых своего време­ни, пришли к одному и тому же заключению: Ньютон

112

совершил ошибку. Для описания движения Луны ма­тематическое выражение для величины силы притяже­ния должно иметь более сложный вид, чем у Ньютона, и состоять из двух слагаемых. На протяжении двух последующих лет они пребывали в убеждении, что природа доказала ошибочность выводов Ньютона, и эта уверенность вдохновила их. Далекие от мысли ви­деть в открытии Ньютона синоним физической науки, физики не без удовольствия помышляли о том, чтобы предать забвению закон всемирного тяготения и вместе с ним вывод об универсальности гравитации. Д'Алам­бер не видел ничего зазорного в том, чтобы во всеус­лышание заявить о необходимости поиска новых дан­ных против Ньютона, которые позволили бы нанести тому «le coup de pied de l'ane6*».

Лишь один человек во Франции нашел в себе муже­ство возвысить голос против столь уничижительного приговора. В 1748 г. Бюффон написал следующие стро­ки:

«Физический закон есть закон лишь в силу того, что его легко измерить и что шкала, которую он собой представляет, не только всегда одна и та же, но и един­ственная в своем роде... Месье Клеро выдвинул возра­жение против системы Ньютона, но это в лучшем слу­чае возражение, и оно не должно и не может быть принципом. Необходимо попытаться преодолеть его, а не превращать в теорию, все следствия из которой опи­раются исключительно на вычисления, ибо, как я уже говорил, с помощью вычислений можно представить что угодно и не достичь ничего. Считая допустимым допол­нять физический закон, каковым является закон все­мирного тяготения, одним или несколькими членами, мы лишь добавляем произвол вместо того, чтобы опи­сывать реальность»7.

Позднее Бюффон провозгласил тезис, который, хотя и на короткое время, стал программой исследований для всей химии:

«Законы сродства, следуя которым составные части различных веществ разъединяются для того, чтобы, соединившись вновь в иных сочетаниях, образовать од­нородные вещества, такие же, как и общий закон, ко­торому подчиняется взаимодействие между всеми пе-

* Удар ноги осла (франц.). — Прим. перев.

113

бесными телами: все они действуют друг па друга оди­наковым образом, в одинаковой зависимости от масс и расстояния — шарик из воды, песка или металла дей­ствует на другой шарик так же, как земной шар дейст­вует на Луну; и если законы сродства ранее считались отличными от законов тяготения, то лишь потому, что они не были полностью поняты, не были до конца по­стигнуты, лишь потому, что проблема не рассматрива­лась в полном объеме. В случае небесных тел конфигу­рация либо сказывается слабо, либо вообще не сказы­вается из-за огромных расстояний, но становится не­обычайно важной, когда расстояния очень малы или обращаются в нуль... Наши внуки смогут с помощью вычислений добиться успеха в этой новой области зна­ния [т. е. вывести закон взаимодействия между элемен­тарными телами из их конфигураций]»8.

История подтвердила правоту натуралиста, для ко­торого сила была не математическим артефактом, а самой сущностью нового естествознания. Последующее развитие событий вынудило физиков признать свою ошибку. Пятьдесят лет спустя Лаплас уже смог создать свое «Изложение системы мира». Закон всемирного тя­готения успешно выдержал все проверки: многочислен­ные случаи кажущегося нарушения этого закона пре­вратились в блестящие подтверждения его правильнос­ти. В то же время французские химики под влиянием Бюффона заново открыли странную аналогию между физическим притяжением и химическим сродством9. Несмотря на едкий сарказм Д'Аламбера, Кондильяка и Кондорсе, чей несгибаемый рационализм был совершен­но несовместим с темными и бессодержательными «аналогиями», они прошли по пути, проложенному Ньютоном, в обратном направлении — от звезд к веще­ству.

К началу XIX в. ньютоновская программа (сведение всех физико-химических явлений к действию сил — к гравитационному притяжению добавилась отталкиваю­щая сила тепла, заставляющая тела расширяться при нагревании и способствующая растворению, а также электрическая и магнитная силы) стала официальной программой лапласовской школы, занимавшей домини­рующее положение в научном мире в эпоху, когда в Европе господствовал Наполеон10.

Начало XIX в. стало свидетелем расцвета французс-

114

ких высших ecoles (школ) и реорганизации универси­тетов. Это было время, когда ученые становились пре­подавателями и профессиональными исследователями и брали на себя задачу воспитания своих преемников11. Это было время первых попыток представить синтез знания в удобообозримой форме, для того чтобы изло­жить его в учебниках и научно-популярных изданиях. Наука перестала быть предметом обсуждения только в великосветских салонах, ее преподавали и популяри­зировали12. Относительно пауки было достигнуто про­фессиональное единство мнений, она была освящена авторитетом университетских кафедр. Ученые сошлись во мнениях прежде всего по поводу ньютоновской сис­темы: во Франции уверенность Бюффона в правильнос­ти ньютоновского подхода наконец возобладала над рациональным скептицизмом века Просвещения.

Велеречивость следующих строк, написанных через сто лет после ньютоновского апофеоза в Европе сыном Ампера, эхом вторит эпитафии А. Поупа:

Провозгласив пришествие мессии от науки,

Кеплер разогнал тучи, скрывавшие небосвод.

И Слово стало человеком, Слово прозрения Бога,

Коего почитал Платон, и нарекли человека Ньютоном.

Он пришел и открыл высший закон,

Вечный, универсальный, единственный и неповторимый, как сам Бог,

И смолкли миры, и он изрек: «ТЯГОТЕНИЕ»,

И это слово было самим словом творения13.

Последовавший затем короткий, но оставивший не­изгладимый след период был периодом торжества нау­ки. Она удостоилась признания и почестей со стороны могущественных держав, была провозглашена облада­тельницей непротиворечивой концепции мироздания. Почитаемый Лапласом Ньютон стал всеобщим симво­лом золотого века. То был счастливый момент, когда ученые были и в собственных глазах, и в глазах дру­гих людей пионерами прогресса, чью деятельность под­держивало и поощряло все общество.

Уместно спросить: каково значение ньютоновского синтеза в наши дни, после создания теории поля, тео­рии относительности и квантовой механики? Это — сложная проблема, и мы к ней еще вернемся. Теперь нам хорошо известно, что природа отнюдь не «комфор­табельна и самосогласованна», как полагали прежде. На микроскопическом уровне законы классической ме-

115

ханики уступили место законам квантовой механики. Аналогичным образом на уровне Вселенной на смену ньютоновской физике пришла релятивистская физика. Тем не менее классическая физика и поныне остается своего рода естественной точкой отсчета. Кроме того, в том смысле, в каком мы определили ее, т. е. как описание детерминированных, обратимых, статичных траекторий, ньютоновская динамика и поныне образует центральное ядро всей физики.

Разумеется, со времен Ньютона, формулировка классической динамики претерпела значительные изме­нения. Эти изменения явились результатом работы ряда величайших математиков и физиков, таких, как Гамильтон и Пуанкаре. В истории классической динамики кратко можно выделить два периода. Первым был период прояснения и обобщения. Во второй период даже в тех областях, где (в отличие от квантовой ме­ханики и теории относительности) классическая меха­ника в целом по-прежнему остается верной, ее основные понятия подверглись критическому пересмотру. В тот момент, когда пишется эта книга — в конце XX в., — мы все еще находимся во втором периоде. Обратимся теперь к общему языку динамики, созданному трудами ученых XIX в. (в гл. 9 мы кратко опишем возрождение классической динамики в наше время).

3. Язык динамики

Ныне мы располагаем всем необходимым для того, чтобы сформулировать классическую динамику ком­пактно и изящно. Как мы увидим из дальнейшего, все свойства динамической системы могут быть выражены с помощью одной функции, известной под названием функций Гамильтона, или гамильтониана. Языку дина­мики свойственны непротиворечивость и полнота. Он позволяет однозначно сформулировать любую правиль­но поставленную («законную») задачу динамики. Неуди­вительно, что начиная с XVIII в. структура динамики вызывала и продолжает вызывать восхищение и поны­не поражает воображение.

В динамике одну и ту же систему можно рассмат­ривать с различных точек зрения. В классической ди­намике все эти точки зрения эквивалентны: от любой

116

из них к любой другой можно перейти с помощью пре­образования (замены переменных). Можно говорить о различных эквивалентных представлениях, в которых выполняются законы динамики. Различные эквивалент­ные представления образуют общий язык динамики. Этот язык позволяет выразить в явном виде статичес­кий характер, придаваемый классической динамикой описываемым ею системам: для многих классических систем время не более чем акциденция, поскольку их описание может быть сведено к описанию невзаимо­действующих механических систем. Для того чтобы мы могли ввести эти понятия наиболее просто, начнем с закона сохранения энергии.

В идеальном мире динамики, не знающем ни тре­ния, ни соударений, коэффициент полезного действия машин равен единице; динамическая система, которой является машина, лишь передает «целиком, без остат­ка» все сообщаемое ей движение. Машина, получаю­щая некоторый запас потенциальной энергии (напри­мер, в виде сжатой пружины, поднятого груза или сжа­того воздуха), может производить движение, соответст­вующее «равному» количеству кинетической энергии, а именно тому, которое потребовалось бы для восполне­ния запаса потенциальной энергии, израсходованного на производство движения. В простейшем случае един­ственная сила, которую приходится рассматривать, — это сила тяжести (с этим случаем мы встречаемся при анализе работы всех простых машин: блоков, рычагов, воротов и т. д.). Нетрудно вывести (для этого случая) общее отношение эквивалентности причины и действия. Высота h, которую проходит при падении тело, пол­ностью определяет скорость, приобретаемую телом к концу падения. Если тело с массой m падает верти­кально, соскальзывает по наклонной плоскости или съезжает с горки, то приобретаемая телом скорость v и кинетическая энергия тv2/2 зависят только от вели­чины h, на которую понизился уровень тела (v=O/2gh), и позволяют телу вернуться на первоначальную высоту. Работа против силы тяжести, совершаемая при движе­нии вверх, восполняет потенциальную энергию на вели­чину mgh, т. е. на столько, сколько потеряла система при падении. Другим примером может служить маят­ник, у которого кинетическая и потенциальная энергия непрерывно преобразуются одна в другую.

117

Разумеется, если вместо тела, падающего на Землю, рассматривать какую-нибудь систему взаимодействую­щих тел, то ситуация будет не столь прозрачной. Тем не менее в любой момент времени полное изменение кинетической энергии вполне компенсирует изменение потенциальной энергии (связанное с изменением рас­стояний между точками системы). Следовательно, в любой изолированной системе энергия, как и в случае свободного падения, сохраняется.

Таким образом, потенциальная энергия (или потен­циал, обычно обозначаемый через V), зависящая от относительного положения частиц, является обобщени­ем величины, позволявшей строителям машин измерять движение, которое могла бы производить машина в результате изменения ее пространственной конфигура­ции (например, изменение высоты массы m — одной из частей машин — увеличивает потенциальную энер­гию на mgh). Кроме того, потенциальная энергия по­зволяет вычислять систему сил, приложенных в каждый момент времени к различным точкам описываемой сис­темы: в каждой точке производная от потенциала по пространственной координате q служит мерой силы, приложенной в данной точке в направлении этой коор­динаты. Таким образом, законы движения Ньютона можно сформулировать, используя в качестве основной величины потенциальную энергию вместо силы: изме­нение скорости (или импульса р — произведения массы и скорости) материальной точки измеряется производ­ной от потенциала по координате q точки.

В XIX в. эта формулировка второго закона Ньюто­на была обобщена с помощью введения новой функ­ции — гамильтониана Н. Функция Гамильтона есть не что иное, как полная энергия системы, т. е. сумма ее кинетической и потенциальной энергии. Но полная энер­гия представлена как функция не координат и скорос­тей, обозначаемых, по традиции, соответственно q и dq/dt, а так называемых канонических переменных — координат и импульсов, которые принято обозначать q и р. В простейших случаях, таких, как свободная частица, между скоростью и импульсом существует яв­ное соотношение (p=mdq/dt), но в общем случае ско­рость и импульс связаны более сложной зависимостью.

Одна функция (гамильтониан) Н(р, q) полностью описывает динамику системы. Вид функции Н несет в

118

себе все наше эмпирическое знание системы. Зная га­мильтониан, мы можем (по крайней мере в принципе) решить все возможные задачи. Например, изменения координаты и импульса во времени равны просто про­изводным от Н по р и q. Гамильтонова формулировка динамики — одно из величайших достижений в истории науки. Впоследствии сфера действия гамильтонова формализма расширилась, охватив теорию электричест­ва и магнетизма. Используется он и в квантовой меха­нике, но, как мы увидим в дальнейшем, гамильтониан Н при этом приходится понимать в обобщенном смыс­ле: в квантовой механике гамильтониан перестает быть обычной функцией координат и импульсов и становится величиной нового типа — оператором. (К этому вопро­су мы еще вернемся в гл. 7.) Не будет преувеличением сказать, что гамильтоново описание динамических сис­тем и поныне имеет первостепенное значение. Уравне­ния, задающие временные изменения координат и им­пульсов через производные от гамильтониана, называ­ются каноническими уравнениями. В них содержатся общие свойства всех динамических изменений. Гамильтонов формализм представляет собой несомненный три­умф математизации природы. Любое динамическое из­менение, к которому применима классическая динами­ка, может быть сведено к простым математическим уравнениям — каноническим уравнениям Гамильтона.

Используя эти уравнения, мы можем проверить пра­вильность заключений относительно общих свойств динамических систем, выведенных в классической ди­намике. Канонические уравнения обратимы: обраще­ние времени математически эквивалентно обращению скорости. Канонические уравнения консервативны: гамильтониан, выражающий полную энергию системы в канонических переменных (координатах и импуль­сах), сохраняется при изменениях координат и им­пульсов во времени.

Мы уже упоминали о том, что существует множест­во различных представлений одной и той же динами­ческой системы (или множество различных точек зре­ния на одну и ту же динамическую систему), в каждом из которых уравнения движения сохраняют гамильтонову форму. Эти представления соответствуют различным выборам координат и импульсов. Одна из основных проблем динамики заключается в том, чтобы указать

119

наиболее разумный выбор канонических переменных р и q, при котором описание динамики становится осо­бенно простым. Например, можно было бы попытаться найти канонические переменные, в которых гамильто­ниан сводится только к кинетической энергии и зависит лишь от импульсов (а не от координат). Замечательно, что в этом случае импульсы становятся интегралами движения, т. е. сохраняются во времени. Действитель­

Рис. 1. Два представления одной и той же динамической систе­мы: а) как множество взаимодействующих точек (волнистые линии условно изображают взаимодействие между точками); б) как мно­жество точек, каждая из которых ведет себя независимо от осталь­ных (если потенциальная энергия исключена, то относительные дви­жения точек не зависят от их взаимного расположения).

но, как мы уже говорили, изменение импульсов во вре­мени в силу канонических уравнений зависит от про­изводной гамильтониана по координатам. Если эта производная обращается в нуль, то импульсы стано­вятся интегралами движения. С аналогичной ситуаци­ей мы сталкиваемся при рассмотрении системы «сво­бодная частица». Для того чтобы перейти к этой систе­ме, необходимо с помощью подходящего преобразова­ния «исключить» взаимодействие. Условимся называть динамические системы, для которых такой переход воз­можен, интегрируемыми системами. Таким образом, любую интегрируемую систему можно представить в виде совокупности подсистем. Каждая из таких подсис­тем изменяется в полной изоляции от других, независи­мо от них, совершая в процессе своей эволюции вечное и неизменное движение, которое Аристотель приписывал небесным телам (см. рис. 1).

Мы уже упоминали о том, что в динамике «все за­дано». В случае гамильтоновой динамики это означает,

120

что с самого первого мгновения значения различных инвариантов движения заданы. Ничего нового не может ни «случиться», ни «произойти». Так в гамильтоновой динамике мы сталкиваемся с одним из тех драматичес­ких моментов в истории науки, когда описание приро­ды сводится почти к статической картине. Действитель­но, при разумной замене переменных мы можем добить­ся, чтобы все взаимодействия исчезли. Долгое время считалось, что интегрируемые системы, сводимые к сво­бодным частицам, являются прототипами всех динами­ческих систем. Поколения физиков и математиков не покладая рук трудились над тем, чтобы найти для каждого типа динамических систем «правильные» пере­менные, которые позволили бы исключить взаимодейст­вия. Одним из наиболее изученных примеров может служить задача трех тел, которую с полным основани­ем можно назвать наиболее важной задачей в истории динамики. Одним из частных случаев задачи трех тел является движение Луны, испытывающей притяжение как со стороны Земли, так и со стороны Солнца. Были предприняты бесчисленные попытки свести эту систему к интегрируемой, но в конце XIX в. Брунс и Пуанкаре доказали, что это невозможно. Их результат был пол­ной неожиданностью для современников и, по существу, возвестил о наступлении бесповоротного конца всех простых экстраполяций динамики на основе интегри­руемых систем. Открытие Брунса и Пуанкаре показа­ло, что динамические системы не изоморфны. Простые интегрируемые системы допускают разложение на не­взаимодействующие подсистемы, но в общем случае исключить взаимодействия невозможно. Хотя в то вре­мя значение открытия Брунса и Пуанкаре не было оце­нено по достоинству, оно означало отказ от незыблемо­го убеждения в однородности динамического мира, в его сводимости к интегрируемым системам. Природа как эволюционирующая система с многообразно взаи­модействующими подсистемами упорно сопротивлялась попыткам сведения ее к универсальной схеме, не со­держащей к тому же времени.

Это положение подтверждали и другие факты. Мы уже упоминали о том, что траектории динамической системы соответствуют детерминистическим законам: коль скоро начальное состояние задано, динамические законы движения позволяют вычислить траекторию

121

для любого момента времени в будущем и в прошлом. Однако в некоторых особых точках траектория может становиться внутренне неопределенной. Например, жесткий маятник может совершать движения двух ка­чественно различных типов: либо колебаться, либо вра­щаться вокруг точки подвеса. Если начальный толчок достаточно силен для того, чтобы привести маятник в вертикальное положение с нулевой скоростью, то на­правление, в котором он упадет, и, следовательно, ха­рактер движения не определенны. Достаточно сообщить маятнику бесконечно малое возмущение, чтобы он на­чал вращаться или совершать колебания вокруг точки подвеса. (Подробно проблема неустойчивости движе­ния, с которой мы здесь сталкиваемся, будет рассмот­рена в гл. 9.)

Интересно, что еще Максвелл придавал особым точкам большое значение. Описывая взрыв ружейного пороха, он замечает:

«Во всех этих случаях имеется одно общее обстоя­тельство: система обладает некоторым количеством по­тенциальной энергии, способным трансформироваться в движение, но не трансформирующимся до тех пор, по­ка система не достигнет определенной конфигурации, для перехода в которую требуется совершить работу, в одних случаях бесконечно малую, но, вообще говоря, не находящуюся в определенной пропорции к энергии, выделяемой вследствие перехода. Примерами могут служить скала, отделившаяся от основания в резуль­тате выветривания и балансирующая на выступе гор­ного склона, небольшая искра, поджигающая огромный лес, слово, ввергающее мир в пучину войны, крупица вещества, лишающая человека воли, крохотная спора, заражающая посевы картофеля, геммула*, превращаю­щая нас в философов или идиотов. У каждого сущест­вования выше определенного ранга имеются свои осо­бые точки; чем выше ранг, тем их больше. В этих точ­ках воздействия, физическая величина которых слиш­ком мала для того, чтобы существо конечных размеров принимало их во внимание, могут приводить к необы­чайно важным последствиям. Всеми великими резуль­татами человеческой деятельности мы обязаны искус-

* Гипотетическая наследственная частица. — Прим. перев.

122

назад содержание далее



ПОИСК:




© FILOSOF.HISTORIC.RU 2001–2023
Все права на тексты книг принадлежат их авторам!

При копировании страниц проекта обязательно ставить ссылку:
'Электронная библиотека по философии - http://filosof.historic.ru'