вещей, связанных между собой определенными отношениями, должна, как считает современная физика, проистекать из этих отношений, а сами отношения должны с необходимостью следовать из «природы» вещей (см. гл. 10). Таким образом, Уайтхеда с полным основанием можно считать предтечей «самосогласованных» описаний типа философии «бутстрэпа» в физике элементарных частиц, утверждающей универсальную взаимо-связанность всех частиц. Но в те времена, когда Уайтхед создавал свой труд «Процесс и реальность», ситуация в физике была совершенно иной и философия Уайтхеда нашла отклик лишь в биологии23.
Случай Уайтхеда, как и случай Бергсона, свидетельствует о том, что только раскрывающаяся, расширяющаяся наука способна положить конец расколу между естествознанием и философией. Такое расширение науки возможно только при условии, если мы пересмотрим нашу концепцию времени. Отрицать время, т. е. сводить его к проявлению того или иного обратимого закона, означает отказаться от возможности сформулировать концепцию природы, согласующуюся с гипотезой о том, что природа породила живые существа, и в частности человека. Отрицание времени обрекает нас на бесплодный выбор между антинаучной философией и отчужденным естествознанием.
5. Ignoramus et Ignorabimus — лейтмотив позитивистов
Другой метод преодоления трудностей классической рациональности, присущих классической науке, состоял в отделении того, что было наиболее плодотворным с точки зрения науки, от того, что «истинно». Это еще один аспект кантианского раскола. В своем докладе «О цели естественных наук» (1865 г.) Кирхгоф провозгласил, что высшая цель естествознания состоит в сведении любого явления к движению, в свою очередь движение подлежит описанию средствами теоретической механики. С аналогичным заявлением выступил Гельмгольц, химик, медик, физик и физиолог, бывший властителем дум в германских университетах в те времена, когда они были средоточием европейской науки. Гельмгольц утверждал, что «явления природы необхо-
147
димо свести к движениям материальных частиц, обладающих неизменными движущими силами, которые зависят лишь от условий пространства»24.
Таким образом, цель естественных наук состояла в том, чтобы свести все наблюдения к законам, сформулированным Ньютоном и обобщенным такими знаменитыми физиками и математиками, как Лагранж, Гамильтон и другие. Вопрос о том, почему движущие силы существуют и входят в уравнение Ньютона, считался незаконным. «Понять» материю (массу) и силы было невозможно, хотя эти понятия использовались при формулировке законов динамики. В ответ на вопрос «почему?» природа сил и масс оставалась скрытой от нас. Дюбуа-Реймон, как мы уже упоминали, весьма точно сформулировал ограничения нашего знания: «Ignoramus et ignorabimus («мы не знаем и не будем знать»). Наука не обеспечивает нам доступ к тайнам природы. Что же такое наука?
Мы уже приводили высказывание весьма влиятельного физика и философа Маха: наука есть составная часть дарвиновской борьбы за существование. По мнению Маха, наука помогает нам организовать наш опыт. Она приводит к экономии мышления. Математические законы — не что иное, как соглашения, позволяющие удобно резюмировать результаты возможных экспериментов. В конце XIX в. научный позитивизм обладал огромной интеллектуальной привлекательностью. Во Франции он оказал влияние на труды таких выдающихся исследователей, как Дюгем и Пуанкаре.
Еще один шаг в преодолении «презренной метафизики» — и мы в Венском кружке. Все положительное знание, по мнению членов этого кружка, находится под юрисдикцией естествознания, а философия необходима для поддержания положительного знания в порядке. Такая точка зрения означала радикальное подчинение естествознанию, науке всего рационального знания и всех рациональных вопросов. Вот как пишет об этом в своей книге «Направление времени» выдающийся философ-неопозитивист Рейхенбах;
«Для решения проблемы времени не существует других способов, кроме методов физики. Физика гораздо более других наук связана с природой времени. Если время объективно, то физик должен установить этот факт; если имеется становление, то физик должен
148
познать его; однако если время лишь субъективно и бытие безвременно, тогда физик должен иметь возможность игнорировать время в своем истолковании реальности и описывать мир без ссылок на время... Исследование природы времени без ссылок на время — безнадежное предприятие. Если имеется решение философской проблемы времени, то оно зафиксировано в уравнениях математической физики»25.
Работа Рейхенбаха представляет большой интерес для каждого, кто пожелает узнать, о чем может сказать физика по поводу проблемы времени, но это не столько книга по философии природы, сколько рассказ о том, чем проблема времени привлекает к себе внимание и «озадачивает» физиков, но не философов.
Какова же роль философии? Нередко утверждалось, что философия призвана стать наукой о науке. В этом случае цель философии состояла бы в том, чтобы анализировать методы естественных наук, аксиоматизировать и уточнять используемые ими понятия. Но такая роль превратила бы бывшую «царицу всех наук» в некое подобие их служанки. Разумеется, существует возможность того, что уточнение понятий будет способствовать дальнейшему развитию паук, что понимаемая так философия, хотя и с использованием «чужих» методов — логики, семантики, сможет производить новое знание, сравнимое с знанием, добываемым собственно наукой. Такую надежду питают приверженцы «аналитической философии», занимающей столь видное место в англо-американских кругах. Мы не хотим умалять интерес, который представляют такие попытки. Однако нас сейчас интересуют совершенно другие проблемы. Мы не ставим своей целью прояснить или аксиоматизировать существующее знание, мы стремимся лишь в какой-то степени восполнить некоторые принципиально важные пробелы в этом знании.
6. Новое начало
В первой части нашей книги мы описали, с одной стороны, диалог с природой, который сделала возможным классическая наука, а с другой стороны, ненадежное положение науки в системе культуры в целом. Существует ли вывод из создавшегося довольно затрудни-
149
тельного положения? В этой главе мы обсудили некоторые попытки достижения альтернативных способов познания. Мы рассмотрели также позитивистскую точку зрения, которая отделяет науку от реальности.
На научных собраниях моменты наивысшего возбуждения очень часто наступают, когда ученые принимаются обсуждать вопросы, не имеющие никакого практического значения, не являющиеся жизненно важными, например возможные интерпретации квантовой механики или роль расширяющейся Вселенной в нашей концепции времени. Если бы позитивистская точка зрения, сводящая науку к некоторому исчислению символов, была принята, то наука утратила бы значительную часть своей привлекательности. Распался бы ньютоновский синтез теоретических понятий и активного знания. Мы снова оказались бы в ситуации, известной со времен Древней Греции и Рима: между техническим, практическим знанием, с одной стороны, и теоретическим знанием, с другой, зияла бы непреодолимая пропасть.
Для древних природа была источником мудрости. Средневековая природа говорила о боге. В новые времена природа стала настолько безответной, что Кант счел необходимым полностью разделить науку и мудрость, науку и истину. Этот раскол существует на протяжении двух последних столетий. Настала пора положить ему конец. Что касается науки, то она созрела для этого. Первым шагом к возможному воссоединению знания, как нам сейчас представляется, стало создание в XIX в. теории теплоты, открытие законов, или «начал», термодинамики. Именно термодинамика претендует на роль хронологически первой «науки о сложности». К этой науке, от ее зарождения до последних достижений, мы сейчас и перейдем.
150
ЧАСТЬ ВТОРАЯ. НАУКА О СЛОЖНОСТИ
Глава 4. ЭНЕРГИЯ И ИНДУСТРИАЛЬНЫЙ ВЕК
1. Тепло — соперник гравитации
Ignis mutat res*. Это высказывание, известное с незапамятных времен, всегда связывало химию с «наукой об огне». В XVIII в., начиная с концептуальной перестройки, вынудившей науку пересмотреть то, что ранее отвергалось ею во имя механистического мировоззрения, а именно такие понятия, как «необратимость» и «сложность», огонь стал частью экспериментальной науки.
Огонь преобразует материю. Он приводит к химическим реакциям, к таким процессам, как плавление и испарение. Огонь заставляет топливо сгорать и высвобождать тепло. Из всех этих общеизвестных фактов наука XIX в. сосредоточила внимание на одном; горение сопровождается выделением тепла, а подвод тепла может вызывать увеличение объема, в результате чего горение совершает работу. Таким образом, огонь приводит к созданию машины нового типа — тепловой машины, — технологическому новшеству, ставшему основой индустриального общества1.
Интересно отметить, что Адам Смит работал над своим «Исследованием о природе и причинах богатства народов» и собирал данные о перспективах и определяющих факторах роста промышленности в том самом университете, в стенах которого Джеймс Уатт завершал доводку своей паровой машины. Тем не менее Адам Смит смог найти для каменного угля единственно полезное применение — как источник тепла. (В XVIII в. еще не были известны другие источники энергии, кроме воды,
* Огонь движет вещами (лат.). — Прим. перев.
153
ветра, мускульной силы животных и приводимых ими в движение простейших машин.)
Быстрое распространение британской паровой машины вызвало новый интерес к механическому действию теплоты, и термодинамика, детище этого интереса, занималась не столько выяснением природы тепла, сколько скрытыми в тепле возможностями производства «механической энергии».
Что же касается рождения «науки о сложности», то мы предлагаем датировать его 1811 годом, когда барону Жан-Батисту Жозефу Фурье, префекту Изера, была присуждена премия Французской академии наук за математическую теорию распространения тепла в твердых телах.
Установленный Фурье результат был удивительно прост и изящен: поток тепла пропорционален градиенту температуры. Замечательно, что этот простой закон применим к веществу, в каком бы состоянии оно ни находилось: твердом, жидком или газообразном. Кроме того, закон Фурье выполняется независимо от химического состава тела, будь оно из золота или из железа. Специфическим для каждого вещества является коэффициент пропорциональности между тепловым потоком и градиентом температуры.
Ясно, что универсальный характер закона Фурье не связан непосредственно с динамическими взаимодействиями, описываемыми законом Ньютона, поэтому формулировку закона теплопроводности можно рассматривать как исходную точку науки нового типа. Действительно, простота предложенного Фурье математического описания распространения тепла разительно контрастирует со сложностью вещества, рассматриваемого с точки зрения его молекулярного строения. Твердое тело, газ или жидкость представляют собой макроскопические системы, состоящие из огромного числа молекул, и тем не менее теплопроводность описывается одним-единственным законом. Фурье вывел свой закон в то время, когда в европейской науке школа Лапласа занимала господствующее положение. Лаплас, Лагранж и их ученики пытались объединенными усилиями критиковать теорию Фурье, но были вынуждены отступить2. Сбывшаяся было мечта Лапласа потерпела первое поражение. Фурье создал физическую теорию, не уступавшую по математической строгости механическим законам движения, но в
154
то же время остававшуюся совершенно чуждой ньютоновскому миру. С момента появления теории теплопроводности Фурье математика, физика и ньютоновская наука перестали быть синонимами.
Открытие закона теплопроводности имело непреходящее значение. Интересно отметить, что с появлением закона Фурье исторические пути развития физики во Франции и Англии разошлись и к современному этапу французские физики и их английские коллеги следовали различными маршрутами.
Во Франции крушение мечты Лапласа привело к позитивистской классификации науки на иерархически упорядоченные отделы, предложенные Огюстом Контом. Контовская классификация науки была подробно проанализирована Мишелем Серром3. В физике сосуществуют две универсалии: тепло и гравитация. Более того, как вынужден признать позднее Конт, эти две универсалии — антагонисты. Гравитация действует на инертную массу, которая подчиняется гравитации, не испытывая ее действия иным путем, кроме как через движение, которое приобретает или передает. Тепло преобразует вещество, определяет изменения состояния и вызывает изменения внутренних свойств. В некотором смысле это было подтверждением протеста химиков-антиньютонианцев и всех тех, кто подчеркивал различие между чисто пространственно-временным поведением, приписываемым массе, и специфической активностью вещества. Именно такое различие и было принято за основу классификации наук, проведенной Контом по общему признаку — порядку, т. е. равновесию. К механическому равновесию сил позитивистская классификация просто добавила понятие теплового равновесия.
С другой стороны, в Британии с появлением теории распространения тепла отнюдь не прекратились попытки объединения всех областей знания, более того, там наметилось новое направление научных исследований — первые шаги в создании теории необратимых процессов.
Закон Фурье, если его применить к изолированному телу с неоднородным распределением температуры, описывает постепенное установление равновесия. Теплопроводность приводит к все большему выравниванию распределения температуры до тех пор, пока распределение во всем теле не станет однородным. Всякий знает,
155
что выравнивание температуры — процесс необратимый. Еще столетие назад Берхаве подчеркивал, что тепло всегда распространяется и выравнивается. Таким образом, наука о сложных явлениях (основанных на взаимодействии большого числа частиц) и временная асимметрия с самого начала оказались взаимосвязанными. Но теплопроводность стала исходным пунктом исследований природы необратимости не раньше, чем была установлена ее связь с понятием «диссипация», рассматриваемым с инженерной точки зрения4.
Познакомимся несколько подробнее со структурой новой «науки о тепле» в том виде, в каком она сложилась в начале XIX в. Подобно механике, наука о тепле включала в себя и оригинальную концепцию физического объекта, и определение машины, или двигателя, т. е. отождествление причины и следствия в специфическом способе производства механической работы.
При исследовании физических процессов, связанных с теплом, состояние системы необходимо задавать, указывая не положения и скорости ее составных частей (в объеме газа порядка 1 см3 содержится около 1023 молекул), как в случае динамики, а некоторую совокупность макроскопических параметров, таких, как температура, давление, объем и т. д. Кроме того, необходимо учитывать граничные условия, описывающие отношение системы к окружающей среде.
В качестве примера рассмотрим одно из характерных свойств макроскопической системы — ее удельную теплоемкость. Напомним, что удельной теплоемкостью называется количество тепла, которое необходимо сообщить системе, чтобы поднять ее температуру на один градус при постоянном объеме или давлении. Чтобы исследовать удельную теплоемкость (например, при постоянном объеме), систему необходимо привести во взаимодействие с окружающей средой: система должна получить определенное количество тепла, в то время как объем ее поддерживается постоянным, а температура может изменяться.
В более общем случае систему можно подвергнуть механическому воздействию (например, поддерживать постоянство давления или объема с помощью поршня), тепловому воздействию (подводить к системе или отводить от нее некоторое количество тепла) или химическому воздействию (создавать поток реагирующих веществ
156
и продуктов реакции между системой и окружающей средой). Как мы уже упоминали, давление, объем, химический состав и температура являются классическими физико-химическими параметрами, через которые выражаются свойства макроскопических систем. Термодинамику можно определить как науку о корреляции между изменениями этих свойств. Следовательно, термодинамические объекты приводят к новой по сравнению с динамическими объектами точке зрения. Цель теории состоит не в предсказании поведения системы в терминах взаимодействия частиц, а в предсказании реакции системы на изменения, вводимые нами извне.
Механическое устройство (машина) возвращает в виде работы потенциальную энергию, полученную им из внешнего мира. Причина и следствие имеют одинаковую природу и, по крайней мере в идеальном случае, эквивалентны. Действие тепловой машины, в отличие от механического устройства, сопряжено с материальными изменениями состояний, включающими преобразование механических свойств системы, расширением и увеличением объема. Производимую тепловым двигателем работу следует рассматривать как результат подлинного процесса преобразования, а не только передачи движения. Таким образом, тепловая машина — не пассивное устройство. Строго говоря, она производит движение. С этой особенностью тепловой машины связана новая проблема: чтобы восстановить способность системы производить движение, ее необходимо возвратить в начальное состояние. Следовательно, необходим второй процесс, второе изменение состояния, которое компенсировало бы то изменение, которое производит движение. В тепловой машине таким вторым процессом, противоположным первому, является охлаждение системы до начальных значений температуры, давления и объема.
Понятие необратимого процесса было введено в физику в связи с проблемой повышения коэффициента полезного действия (кпд) тепловых машин, т. е. отношения между производимом работой и теплом, которое необходимо подвести к системе, чтобы осуществить два взаимно компенсирующих, процесса. Мы еще вернемся к вопросу о значении закона Фурье для этой проблемы, но сначала опишем ту существенную роль, которую играет закон сохранения энергии.
157
2. Принцип сохранения энергии
Мы уже отмечали, что в классической динамике энергия занимает центральное место. Гамильтониан (сумму кинетической и потенциальной энергий) можно представить в канонических переменных — координатах и импульсах. В процессе движения значения канонических переменных изменяются, значение же гамильтониана остается постоянным. Динамическое изменение лишь перераспределяет относительную значимость потенциальной и кинетической энергий, оставляя неизменной их сумму.
Начало XIX в. совпало с бурным периодом в истории экспериментальной физики5. Нескончаемая вереница открытий показала физикам, что движение способно порождать не только изменения в относительных положениях тел в пространстве. Новые процессы, открытые в лабораториях, постепенно создали сеть, связавшую воедино все новые области физики с другими более традиционными областями, например с механикой. Одну из таких связей неожиданно обнаружил Гальвани. До него были известны только статические электрические заряды. Производя опыты с препаратами лапок лягушек, Гальвани впервые экспериментально наблюдал действие электрического тока. А. Вольта вскоре понял, что «гальванические» сокращения лапок лягушки вызывает проходящий через них электрический ток. В 1800 г. Вольта построил химическую батарею: стало возможным получать электричество с помощью химических реакций. Затем был открыт электролиз: электрический ток позволял изменять химическое сродство и проводить химические реакции. Но электрический ток давал также свет и тепло, а в 1820 г. Эрстед обнаружил, что электрический ток оказывает действие и на магнитную стрелку. В 1822 г. Зеебек показал, что тепло может быть источником электричества, а в 1834 г. им был открыт способ охлаждения вещества с помощью электричества. В 1831 г. Фарадей индуцировал электрический ток с помощью магнитных эффектов. Так постепенно была открыта целая совокупность новых физических эффектов. Естественнонаучный горизонт расширялся с неслыханной быстротой.
Решающий шаг был сделан в 1847 г. Джоулем: он понял, что связи, обнаруженные между выделением или поглощением тепла, электричеством и магнетизмом, протеканием химических реакций, а также биологическими
158
объектами, носят характер «превращения». Идея превращения, опирающаяся на постулат о количественном сохранении «чего-то» при его качественных изменениях, обобщает то, что происходит при механическом движении. Как мы уже знаем, полная энергия сохраняется, в то время как потенциальная энергия переходит, превращается в кинетическую, и наоборот. Джоуль определил общий эквивалент для физико-химических трансформаций, что позволило измерить сохраняющуюся величину. Впоследствии6 эта величина стала известна как «энергия». Джоуль установил первую эквивалентность, измерив механическую работу, которую необходимо затратить, чтобы поднять температуру данного количества воды на один градус. Так среди ошеломляющего потока новых разнообразных открытий был обнаружен унифицирующий элемент. Сохранение энергии при самых различных преобразованиях, претерпеваемых физическими, химическими и биологическими системами, стало путеводным принципом в исследовании новых процессов.
Неудивительно, что закон сохранения энергии был столь важен для физиков XIX в. Для многих из них он был воплощением единства природы. Это убеждение отчетливо звучит в высказывании Джоуля, выдержанном в традициях английской науки:
«Явления природы, механические, химические или биологические, состоят почти полностью из непрерывного превращения тяготения на расстоянии живой силы [кинетической энергии] в тепло, и наоборот. Тем самым поддерживается порядок во Вселенной: ничто не расстрачивается, ничто не утрачивается, а весь механизм при всей своей сложности работает слаженно и гармонично. И хотя, как в ужасном видении пророка Иезекииля, «казалось, будто колесо находилось в колесе» (Иезек, 1, 16) и все кажется сложным и вовлеченным в хитросплетения почти неисчерпаемого многообразия причин, следствий, превращений и выстраивания в определенной последовательности, тем не менее сохраняется идеальнейший порядок и все бытие послушно непререкаемой воле бога»7.
Еще более показателен случай немецких ученых Гельмгольца, Майера и Либиха. Все трое принадлежали к культурной традиции, которая отвергла бы взгляды Джоуля с позиций чисто позитивистской практики. В ту пору, когда они совершали свои открытия, ни один из
159
них не был, строго говоря, физиком. Однако их всех интересовала физиология дыхания. Со времен Лавуазье это был своего рода эталон проблемы, в которой функционирование живого существа поддавалось описанию в точных физических и химических терминах, таких, как расход кислорода при горении, выделение тепла и мускульная работа. Эта проблема привлекала физиологов и химиков, чуждых чисто умозрительным построениям романтиков и жаждущих внести свой вклад в экспериментальную науку. Обстоятельства, при которых эти трое ученых пришли к заключению, что дыхание, да и природа в целом подчиняются универсальной «эквивалентности», лежащей в основе всех, больших и малых, явлений, позволяют утверждать, что именно немецкой философской традиции открыватели закона сохранения энергии обязаны своей концепцией, совершенно чуждой позитивисткой позиции: все трое без малейших колебаний пришли к выводу о всеобщем характере закона сохранения энергии, о том, что он пронизывает всю природу до мельчайших кирпичиков мироздания.
Особенно замечательным нам представляется случай Майера8. Работая в молодые годы врачом в голландских колониях на Яве, Майер обратил внимание на ярко красный цвет венозной крови у одного из своих пациентов. Это наблюдение привело его к заключению, что жителям жаркого тропического климата требуется меньше кислорода для поддержания нормальной температуры тела, чем в средних широтах, чем и объясняется яркий цвет их крови. Майер продолжил свои исследования и установил баланс между потреблением кислорода, являющимся источником энергии, и потреблением энергии, затрачиваемой на поддержание постоянной температуры тела, несмотря на тепловые потери и мышечную работу. Это была счастливая догадка, так как причиной яркого цвета крови пациента вполне могла быть, например, его «лень». Но Майер не остановился на достигнутом и, продолжив свои рассуждения, пришел к заключению, что баланс потребления кислорода и тепловых потерь — не более чем частное проявление существования какой-то неразрушимой «силы», лежащей в основе всех явлений.
Тенденция видеть в явлениях природы продукты лежащей в их основе реальности, сохраняющей постоянство при всех трансформациях, поразительно напоминает идеи Канта. Влияние Канта отчетливо ощущаетс
160
и в другой идее, которую разделяли некоторые физиологи: в необходимости различать витализм как философскую спекуляцию и витализм как проблему научной методологии. Для тех физиологов, кто придерживался этой точки зрения, даже если бы существовала «жизненная» сила, лежащая в основе функционирования живых организмов, объект физиологии по своей природе оставался бы чисто физико-химическим. По двум названным выше причинам кантианство, узаконившее ту систематическую форму, которую приняла математическая физика в XVIII в., по праву может считаться одним из источников обновления физики в XIX в.9
Гельмгольц совершенно открыто признавал влияние Канта. Для Гельмгольца закон сохранения энергии был лишь воплощением в физике общего априорного требования, на котором зиждется вся наука, а именно постулата о фундаментальной инвариантности, которая кроется за всеми трансформациями, происходящими в природе:
«Цель указанных* наук заключается в отыскании законов, благодаря которым отдельные процессы в природе могут быть сведены к общим правилам и могут быть снова выведены из этих последних. Эти правила, к которым относятся, например, законы преломления или отражения света, закон Мариотта и Гей-Люссака для объема газов, являются, очевидно, не чем иным, как общим видовым понятием, которым охватываются все относящиеся сюда явления. Разыскание подобных законов является делом экспериментальной части наших наук; теоретическая часть старается в то же время определить неизвестные причины явлений из их видимых действий; она стремится понять их из закона причинности.
Мы вынуждены были так поступать и имеем на это право благодаря основному закону, по которому всякое изменение в природе должно иметь достаточное основание. Ближайшие причины, которым мы подчиняем естественные явления, могут быть в свою очередь неизменными или изменяющимися. В последнем случае тот же закон принуждает нас искать другие причины этого изменения и так далее до тех пор, пока мы не доходим до последних причин, которые действуют по
* Физических, естественных. — Прим. перев.
161
неизменному закону и которые, следовательно, в каждое время при одинаковых условиях вызывают одно и то же действие. Конечной целью теоретического естествознания и является, таким образом, разыскание последних неизменных причин явлений в природе»10.
С появлением закона сохранения энергии начала формироваться идея о новом золотом веке физики, который должен был бы в конечном счете привести к наиболее широкому обобщению механики.
Открытие закона сохранения энергии имело далеко идущие культурные последствия. В их число входило и представление об обществе и человеке как о машинах, преобразующих энергию. Но превращение энергии не может быть конечным звеном цепи. Оно отражает пассивные и управляемые аспекты природы, но за ними должен находиться еще один более «активный» уровень. Ницше был одним из тех, кто уловил эхо актов творения и разрушения, выходящих за рамки одного лишь сохранения или превращения. Результаты, являющиеся различиями, могут порождать только различие, например разность температур или уровней потенциальной энергии11. Превращение энергии есть всего лишь уничтожение одного различия с одновременным созданием другого. Сила природы оказывается, таким образом, скрытой использованием эквивалентностей. Но существует другой аспект природы, имеющий непосредственное отношение к котлам паровых двигателей, химическим превращениям, жизни и смерти и выходящий за рамки эквивалентностей и сохранения энергии12. Говоря об этом аспекте, мы подходим к самому важному вкладу термодинамики в естествознание — понятие необратимости.
3. Тепловые машины и стрела времени
Сравнивая механические устройства с тепловыми машинами, например с паровозными котлами с их раскаленными докрасна топками, мы наглядно видим брешь, отделяющую классический век от технологии XIX в. Тем не менее физики поначалу думали, что эту брешь можно игнорировать, что тепловые машины удастся описывать так же, как некогда механические, пренебрегая тем решающим фактом, что использованное тепло-
162
вой машиной горючее исчезает навсегда. Но вскоре подобному благодушию пришел конец. Для классической механики символом природы были часы, для индустриального века таким символом стал резервуар энергии, запас которого всегда грозил иссякнуть. Мир горит как огромная печь; энергия, хотя она и сохраняется, непрерывно рассеивается.
Первоначальную формулировку второго начала термодинамики, которая позволила впервые количественно выразить необратимость, предложил в 1824 г. Сади Карно — до того, как Майер (1842) и Гельмгольц (1847) сформулировали в общем виде закон сохранения энергии. Карно, продолжая работу своего отца Лазара Карно, автора весьма авторитетного трактата по теории машин (механических устройств), занимался анализом работы тепловой машины.
При описании механических устройств движение предполагается заданным. На современном языке это соответствует сохранению энергии и импульса. Движение лишь претерпевает превращения и передается другим телам. Но аналогия между механическим устройством и тепловой машиной была естественной для Сади Карно, поскольку он, как и большинство ученых его времени, предполагал, что тепло сохраняется подобно тому, как сохраняется механическая энергия.
Вода, падающая с одного уровня на другой, способна приводить в движение мельничное колесо. Аналогичным образом Сади Карно предположил, что существуют два источника, один из которых отдает тепло системе двигателя, а второй, находящийся при другой температуре, поглощает тепло, отданное первым. Таким образом, работу тепловой машины Сади Карно представил как движение тепла через машину между двумя источниками, находящимися при различных температурах. Иначс говоря, работу, производимую машиной, по Карно, совершает движущая сила огня.
Сади Карно поставил перед собой те же вопросы, какие задавал его отец13. У какой машины коэффициент полезного действия будет наиболее высоким? Каковы источники потерь? При каких процессах тепло распространяется, не производя работы? Лазар Карно пришел к заключению, что для достижения наивысшего коэффициента полезного действия при постройке и эксплуатации механического устройства следует сводить до ми-
163
Рис. 2. Цикл Карно на диаграмме давление—объем (идеальная тепловая машина, функционирующая между двумя источниками: нагревателем при температуре ТH и холодильником при температуре tl, TH>Tl.). При переходе из состояния a в состояние b происходит изотермический процесс: система, температура которой поддерживается равной температуре нагревателя Тн, поглощает тепло и расширяется. При переходе из состояния b в состояние с происходит адиабатический процесс: теплоизолированная система продолжает расширяться и температура понижается с ТH до tl. На этих двух стадиях система производит механическую работу. При переходе из состояния с в состояние d происходит еще один изотермический процесс: система, температура которой поддерживается равной температуре холодильника tl, сжимается и выделяет тепло. При переходе из состояния d в а происходит еще один адиабатический пропесс: теплоизолированная система сжимается и температура ее повышается с tl до ТH.
нимума удары, трение и резкие, скачкообразные изменения скорости, т. е., короче говоря, все, что происходит при внезапном соприкосновении тел, движущихся с различными скоростями. Рассуждая так, Лазар Карно лишь следовал физике своего времени, считавшей, что только непрерывные изменения консервативны, а все скачкообразные изменения движения сопряжены с необрати-
164
мой потерей «живой силы». Заключение Сади Карно было аналогичным: идеальная тепловая машина вместо того, чтобы избегать любых контактов между телами, движущимися с различными скоростями, должна избегать любых контактов между телами, имеющими различные температуры.
Следовательно, рассуждал Сади Карио, цикл необходимо строить так, чтобы ни одно изменение температуры не было обусловлено прямым потоком тепла между двумя телами, находящимися при различных температурах. Поскольку такие потоки не производили бы никакой механической работы, они приводили бы только к снижению кпд.
Идеальный цикл Kарно представляет собой, таким образом, весьма хитроумное приспособление, позволяющее достигать парадоксального результата: переноса тепла между двумя источниками, находящимися при различных температурах, без прямого контакта между телами с различной температурой. Цикл Карно подразделяется на четыре стадии. На каждой из двух изотермических стадий система находится в контакте с одним из двух тепловых источников, а ее температура поддерживается равной температуре этого источника. Находясь в контакте с горячим источником (нагревателем), система поглощает тепло и расширяется. Находясь в контакте с холодным источником (холодильником), система теряет тепло и сжимается. Две изотермические стадии связаны между собой двумя стадиями, на которых система изолирована от источников, т. е. тепло не поступает в систему и не покидает ее, но температура системы изменяется в результате соответственно расширения и сжатия. Объем продолжает изменяться до тех нор, пока система не перейдет от температуры одного источника к температуре другого.
Весьма замечательно, что в приведенном выше описании идеальной тепловой машины ни разу не упоминаются лежащие в основе его реализации необратимые процессы. Ни слова не говорится о печи, в которой сгорает уголь. Предложенная Сади Карно модель отражает лишь конечный результат горения: возможность поддержания разности температур между двумя источниками.
В 1850 г. Клаузиус дал новое описание цикла Карно — с точки зрения закона сохранения энергии. Он об-
165
наружил, что необходимость в двух тепловых источниках (нагревателе и холодильнике) и выведенная Карно формула для теоретического кпд отражают проблему, специфическую для тепловых машин: необходимость процесса, компенсирующего превращение (в случае цикла Карно — охлаждение в контакте с источником, находящимся при более низкой температуре), для того чтобы вернуть машину к начальным механическим и тепловым условиям. Соотношения баланса, выражающие превращения энергии, оказались теперь объединенными новыми отношениями эквивалентности между воздействиями двух процессов — потока тепла между источниками и превращения тепла в работу — на состояние системы. Новая наука — термодинамика, — установившая связь между механическими и тепловыми эффектами, обрела существование.
Работа Клаузиуса наглядно показала, что мы не можем неограниченно использовать, казалось бы, неограниченный резервуар энергии, который предоставляет нам природа. Не все процессы, при которых энергия сохраняется, возможны. Например, невозможно создать разность энергий, не уничтожив при этом по крайней мере ее эквивалентность. В идеальном цикле Карно тепло, переносимое от одного источника к другому, есть та цена, которую приходится платить за производимую работу. Осуществив цикл Карно, мы получаем, с одной стороны, произведенную механическую работу, а с другой стороны, перенос тепла, причем то и другое связано между собой отношением эквивалентности. Эта эквивалентность действует в обоих отношениях. Обратным ходом та же машина может восстановить начальную разность температур, затратив произведенную работу. Невозможно построить тепловую машину только с одним источником тепла.
Клаузиуса так же, как и Карно, не интересовали потери, за счет которых кпд всех реальных тепловых машин ниже предсказываемого теорией идеального значения. Теория Клаузиуса так же, как и теория Карно, отвечает некоторой идеализации. Она указывает лишь предел, который устанавливает природа для эффективности тепловых машин.
Но с XVIII в. статус идеализации изменился. Опираясь на закон сохранения энергии, новое естествознание стало претендовать на описание не только идеали-
166
заций, но и самой природы, включая «потери». Возникла новая проблема, и в физику вошла необратимость. Как описать то, что происходит в реальной машине? Как включить в баланс энергии потери? Насколько снижают потери кпд реальной машины? Ответы на все эти вопросы проложили путь ко второму началу термодинамики.
4. От технологии к космологии
Как мы уже знаем, вопрос, поднятый Карно и Клаузиусом, привел к теории идеальных тепловых машин, основанной на сохранении энергии и компенсации. Кроме того, стало возможным ставить (и решать) новые проблемы, такие, как диссипация энергии. Уильям Томсон, питавший глубочайшее уважение к работе Фурье, быстро осознал важность этой проблемы и в 1852 г. первым сформулировал второе начало термодинамики.
На теплопроводность, математическую теорию которой построил Фурье, Карно указал как на возможную причину энергетических потерь в тепловом двигателе. Так цикл Карно, уже более не идеальный, а «реальный», стал точкой конвергенции двух универсалий, открытых в XIX в.: превращения энергии и теплопроводности. Сочетание этих двух открытий привело Томсона к формулировке его нового принципа: существования в природе универсальной тенденции к деградации механической энергии. Обращаем особое внимание на слово «универсальная», перекликающееся со словом «универсум», т. е. весь мир, или Вселенная.
Мир Лапласа был идеальным вечным двигателем. Начиная с Томсона, космология перестает быть только отражением нового идеального теплового двигателя, но и включает последствии необратимого распространения тепла в мире, в котором энергия сохраняется. Этот мир космология Томсопа описывала как машину, в которой тепло превращается в движение лишь ценой определенных необратимых потерь и бесполезной диссипации. Соответственно уменьшились различия в природе, способные производить механический эффект. Мир использует эти различия при переходе от одного превращения к другому и стремится к конечному состоянию теплового равновесия — «тепловой смерти». В соответствии с законом Фурье при достижении миром конечного состоя-
167
ния исчезнут всякие различия в температуре, способные производить механический эффект.
Томсон совершил головокружительный прыжок от технологии тепловой машины к космологии. В своей формулировке второго начала термодинамики он использовал научную терминологию середины XIX в.: «сохранение энергии», «тепловой двигатель», «закон Фурье». Немаловажную роль сыграла и культурная среда, в которой было совершено открытие. Общепризнано, что в XIX в. проблема времени приобрела новое значение. Существенную роль времени начали отмечать во всех областях: в геологии, биологии, языкознании, социологии и этике. Вместе с тем интересно отметить, что та специфическая форма, в которой время вошло в физику, именно как тенденция к однородности и смерти, в большей мере напоминает о древних мифологических и религиозных архетипах, чем о все нарастающем усложнении и многообразии, описываемыми биологией и социальными науками. Возвращение этих древних тем можно рассматривать как культурный отзвук социальных и экономических сдвигов времени. Быстрая трансформация технологического способа взаимодействия с природой, постоянно нарастающий темп изменения, с которым столкнулся XIX век, не могли не вызвать тревогу. Это беспокойство не оставляет и нас и принимает самые различные формы в виде повторяющихся призывов к «нулевому росту» общества или к мораторию на научные исследования до провозглашения «научных истин» относительно нашего распадающегося мира. Современные знания в области астрофизики все еще остаются скудными и во многом проблематичными. Трудность продвижения в этой области физики отчасти обусловлена тем, что в астрофизике гравитационные эффекты играют существенную роль и проблемы требуют одновременного использования термодинамики и теории относительности. Тем не менее большинство работ в этой области с удивительным единодушием предсказывает грядущую катастрофу... Одна из последних книг на эту тему рисует такую картину:
«Неприятная истина состоит, по-видимому, в том, что неумолимый распад нашей Вселенной, насколько мы можем судить, неизбежен; организация, охватывающая всякую упорядоченную деятельность от людей до галактик, медленно, но неизбежно деградирует и может