Библиотека    Новые поступления    Словарь    Карта сайтов    Ссылки





назад содержание далее

Часть2 Гл.3-4. с147-168

вещей, связанных между собой определенными отноше­ниями, должна, как считает современная физика, про­истекать из этих отношений, а сами отношения должны с необходимостью следовать из «природы» вещей (см. гл. 10). Таким образом, Уайтхеда с полным основани­ем можно считать предтечей «самосогласованных» опи­саний типа философии «бутстрэпа» в физике элемен­тарных частиц, утверждающей универсальную взаимо-связанность всех частиц. Но в те времена, когда Уайт­хед создавал свой труд «Процесс и реальность», ситуа­ция в физике была совершенно иной и философия Уайтхеда нашла отклик лишь в биологии23.

Случай Уайтхеда, как и случай Бергсона, свидетель­ствует о том, что только раскрывающаяся, расширяю­щаяся наука способна положить конец расколу между естествознанием и философией. Такое расширение нау­ки возможно только при условии, если мы пересмотрим нашу концепцию времени. Отрицать время, т. е. сво­дить его к проявлению того или иного обратимого за­кона, означает отказаться от возможности сформули­ровать концепцию природы, согласующуюся с гипоте­зой о том, что природа породила живые существа, и в частности человека. Отрицание времени обрекает нас на бесплодный выбор между антинаучной философией и отчужденным естествознанием.

5. Ignoramus et Ignorabimus — лейтмотив позитивистов

Другой метод преодоления трудностей классической рациональности, присущих классической науке, состо­ял в отделении того, что было наиболее плодотворным с точки зрения науки, от того, что «истинно». Это еще один аспект кантианского раскола. В своем докладе «О цели естественных наук» (1865 г.) Кирхгоф провоз­гласил, что высшая цель естествознания состоит в све­дении любого явления к движению, в свою очередь движение подлежит описанию средствами теоретичес­кой механики. С аналогичным заявлением выступил Гельмгольц, химик, медик, физик и физиолог, бывший властителем дум в германских университетах в те вре­мена, когда они были средоточием европейской науки. Гельмгольц утверждал, что «явления природы необхо-

147

димо свести к движениям материальных частиц, обла­дающих неизменными движущими силами, которые за­висят лишь от условий пространства»24.

Таким образом, цель естественных наук состояла в том, чтобы свести все наблюдения к законам, сформули­рованным Ньютоном и обобщенным такими знамениты­ми физиками и математиками, как Лагранж, Гамиль­тон и другие. Вопрос о том, почему движущие силы су­ществуют и входят в уравнение Ньютона, считался не­законным. «Понять» материю (массу) и силы было не­возможно, хотя эти понятия использовались при фор­мулировке законов динамики. В ответ на вопрос «по­чему?» природа сил и масс оставалась скрытой от нас. Дюбуа-Реймон, как мы уже упоминали, весьма точно сформулировал ограничения нашего знания: «Ignora­mus et ignorabimus («мы не знаем и не будем знать»). Наука не обеспечивает нам доступ к тайнам природы. Что же такое наука?

Мы уже приводили высказывание весьма влиятель­ного физика и философа Маха: наука есть составная часть дарвиновской борьбы за существование. По мне­нию Маха, наука помогает нам организовать наш опыт. Она приводит к экономии мышления. Математические законы — не что иное, как соглашения, позволяющие удобно резюмировать результаты возможных экспери­ментов. В конце XIX в. научный позитивизм обладал огромной интеллектуальной привлекательностью. Во Франции он оказал влияние на труды таких выдаю­щихся исследователей, как Дюгем и Пуанкаре.

Еще один шаг в преодолении «презренной метафи­зики» — и мы в Венском кружке. Все положительное знание, по мнению членов этого кружка, находится под юрисдикцией естествознания, а философия необходима для поддержания положительного знания в порядке. Такая точка зрения означала радикальное подчинение естествознанию, науке всего рационального знания и всех рациональных вопросов. Вот как пишет об этом в своей книге «Направление времени» выдающийся философ-неопозитивист Рейхенбах;

«Для решения проблемы времени не существует других способов, кроме методов физики. Физика гораз­до более других наук связана с природой времени. Ес­ли время объективно, то физик должен установить этот факт; если имеется становление, то физик должен

148

познать его; однако если время лишь субъективно и бытие безвременно, тогда физик должен иметь возмож­ность игнорировать время в своем истолковании реаль­ности и описывать мир без ссылок на время... Иссле­дование природы времени без ссылок на время — без­надежное предприятие. Если имеется решение фило­софской проблемы времени, то оно зафиксировано в уравнениях математической физики»25.

Работа Рейхенбаха представляет большой интерес для каждого, кто пожелает узнать, о чем может ска­зать физика по поводу проблемы времени, но это не столько книга по философии природы, сколько рассказ о том, чем проблема времени привлекает к себе внима­ние и «озадачивает» физиков, но не философов.

Какова же роль философии? Нередко утверждалось, что философия призвана стать наукой о науке. В этом случае цель философии состояла бы в том, чтобы ана­лизировать методы естественных наук, аксиоматизиро­вать и уточнять используемые ими понятия. Но такая роль превратила бы бывшую «царицу всех наук» в не­кое подобие их служанки. Разумеется, существует воз­можность того, что уточнение понятий будет способство­вать дальнейшему развитию паук, что понимаемая так философия, хотя и с использованием «чужих» мето­дов — логики, семантики, сможет производить новое знание, сравнимое с знанием, добываемым собственно наукой. Такую надежду питают приверженцы «анали­тической философии», занимающей столь видное место в англо-американских кругах. Мы не хотим умалять интерес, который представляют такие попытки. Однако нас сейчас интересуют совершенно другие проблемы. Мы не ставим своей целью прояснить или аксиомати­зировать существующее знание, мы стремимся лишь в какой-то степени восполнить некоторые принципиально важные пробелы в этом знании.

6. Новое начало

В первой части нашей книги мы описали, с одной стороны, диалог с природой, который сделала возмож­ным классическая наука, а с другой стороны, ненадеж­ное положение науки в системе культуры в целом. Су­ществует ли вывод из создавшегося довольно затрудни-

149

тельного положения? В этой главе мы обсудили некото­рые попытки достижения альтернативных способов поз­нания. Мы рассмотрели также позитивистскую точку зрения, которая отделяет науку от реальности.

На научных собраниях моменты наивысшего воз­буждения очень часто наступают, когда ученые прини­маются обсуждать вопросы, не имеющие никакого прак­тического значения, не являющиеся жизненно важны­ми, например возможные интерпретации квантовой ме­ханики или роль расширяющейся Вселенной в нашей концепции времени. Если бы позитивистская точка зре­ния, сводящая науку к некоторому исчислению симво­лов, была принята, то наука утратила бы значительную часть своей привлекательности. Распался бы ньюто­новский синтез теоретических понятий и активного зна­ния. Мы снова оказались бы в ситуации, известной со времен Древней Греции и Рима: между техническим, практическим знанием, с одной стороны, и теоретичес­ким знанием, с другой, зияла бы непреодолимая про­пасть.

Для древних природа была источником мудрости. Средневековая природа говорила о боге. В новые вре­мена природа стала настолько безответной, что Кант счел необходимым полностью разделить науку и муд­рость, науку и истину. Этот раскол существует на про­тяжении двух последних столетий. Настала пора по­ложить ему конец. Что касается науки, то она созрела для этого. Первым шагом к возможному воссоединению знания, как нам сейчас представляется, стало создание в XIX в. теории теплоты, открытие законов, или «на­чал», термодинамики. Именно термодинамика претен­дует на роль хронологически первой «науки о сложно­сти». К этой науке, от ее зарождения до последних до­стижений, мы сейчас и перейдем.

150

ЧАСТЬ ВТОРАЯ. НАУКА О СЛОЖНОСТИ

Глава 4. ЭНЕРГИЯ И ИНДУСТРИАЛЬНЫЙ ВЕК

1. Тепло — соперник гравитации

Ignis mutat res*. Это высказывание, известное с не­запамятных времен, всегда связывало химию с «наукой об огне». В XVIII в., начиная с концептуальной перест­ройки, вынудившей науку пересмотреть то, что ранее отвергалось ею во имя механистического мировоззре­ния, а именно такие понятия, как «необратимость» и «сложность», огонь стал частью экспериментальной науки.

Огонь преобразует материю. Он приводит к химиче­ским реакциям, к таким процессам, как плавление и ис­парение. Огонь заставляет топливо сгорать и высвобож­дать тепло. Из всех этих общеизвестных фактов наука XIX в. сосредоточила внимание на одном; горение сопро­вождается выделением тепла, а подвод тепла может вы­зывать увеличение объема, в результате чего горение со­вершает работу. Таким образом, огонь приводит к созда­нию машины нового типа — тепловой машины, — техно­логическому новшеству, ставшему основой индустриаль­ного общества1.

Интересно отметить, что Адам Смит работал над сво­им «Исследованием о природе и причинах богатства на­родов» и собирал данные о перспективах и определяю­щих факторах роста промышленности в том самом уни­верситете, в стенах которого Джеймс Уатт завершал до­водку своей паровой машины. Тем не менее Адам Смит смог найти для каменного угля единственно полезное применение — как источник тепла. (В XVIII в. еще не были известны другие источники энергии, кроме воды,

* Огонь движет вещами (лат.). — Прим. перев.

153

ветра, мускульной силы животных и приводимых ими в движение простейших машин.)

Быстрое распространение британской паровой маши­ны вызвало новый интерес к механическому действию теплоты, и термодинамика, детище этого интереса, зани­малась не столько выяснением природы тепла, сколько скрытыми в тепле возможностями производства «меха­нической энергии».

Что же касается рождения «науки о сложности», то мы предлагаем датировать его 1811 годом, когда барону Жан-Батисту Жозефу Фурье, префекту Изера, была при­суждена премия Французской академии наук за матема­тическую теорию распространения тепла в твердых те­лах.

Установленный Фурье результат был удивительно прост и изящен: поток тепла пропорционален градиенту температуры. Замечательно, что этот простой закон при­меним к веществу, в каком бы состоянии оно ни находи­лось: твердом, жидком или газообразном. Кроме того, закон Фурье выполняется независимо от химического со­става тела, будь оно из золота или из железа. Специфи­ческим для каждого вещества является коэффициент пропорциональности между тепловым потоком и гради­ентом температуры.

Ясно, что универсальный характер закона Фурье не связан непосредственно с динамическими взаимодейст­виями, описываемыми законом Ньютона, поэтому фор­мулировку закона теплопроводности можно рассматри­вать как исходную точку науки нового типа. Действи­тельно, простота предложенного Фурье математического описания распространения тепла разительно контрасти­рует со сложностью вещества, рассматриваемого с точки зрения его молекулярного строения. Твердое тело, газ или жидкость представляют собой макроскопические си­стемы, состоящие из огромного числа молекул, и тем не менее теплопроводность описывается одним-единствен­ным законом. Фурье вывел свой закон в то время, когда в европейской науке школа Лапласа занимала господ­ствующее положение. Лаплас, Лагранж и их ученики пытались объединенными усилиями критиковать теорию Фурье, но были вынуждены отступить2. Сбывшаяся бы­ло мечта Лапласа потерпела первое поражение. Фурье создал физическую теорию, не уступавшую по математи­ческой строгости механическим законам движения, но в

154

то же время остававшуюся совершенно чуждой ньюто­новскому миру. С момента появления теории теплопро­водности Фурье математика, физика и ньютоновская наука перестали быть синонимами.

Открытие закона теплопроводности имело непреходя­щее значение. Интересно отметить, что с появлением за­кона Фурье исторические пути развития физики во Фран­ции и Англии разошлись и к современному этапу фран­цузские физики и их английские коллеги следовали раз­личными маршрутами.

Во Франции крушение мечты Лапласа привело к по­зитивистской классификации науки на иерархически упо­рядоченные отделы, предложенные Огюстом Контом. Контовская классификация науки была подробно про­анализирована Мишелем Серром3. В физике сосущест­вуют две универсалии: тепло и гравитация. Более того, как вынужден признать позднее Конт, эти две универса­лии — антагонисты. Гравитация действует на инертную массу, которая подчиняется гравитации, не испытывая ее действия иным путем, кроме как через движение, кото­рое приобретает или передает. Тепло преобразует веще­ство, определяет изменения состояния и вызывает изме­нения внутренних свойств. В некотором смысле это было подтверждением протеста химиков-антиньютонианцев и всех тех, кто подчеркивал различие между чисто про­странственно-временным поведением, приписываемым массе, и специфической активностью вещества. Именно такое различие и было принято за основу классификации наук, проведенной Контом по общему признаку — поряд­ку, т. е. равновесию. К механическому равновесию сил позитивистская классификация просто добавила понятие теплового равновесия.

С другой стороны, в Британии с появлением теории распространения тепла отнюдь не прекратились попытки объединения всех областей знания, более того, там на­метилось новое направление научных исследований — первые шаги в создании теории необратимых процес­сов.

Закон Фурье, если его применить к изолированному телу с неоднородным распределением температуры, опи­сывает постепенное установление равновесия. Теплопро­водность приводит к все большему выравниванию рас­пределения температуры до тех пор, пока распределе­ние во всем теле не станет однородным. Всякий знает,

155

что выравнивание температуры — процесс необратимый. Еще столетие назад Берхаве подчеркивал, что тепло всегда распространяется и выравнивается. Таким обра­зом, наука о сложных явлениях (основанных на взаимо­действии большого числа частиц) и временная асиммет­рия с самого начала оказались взаимосвязанными. Но теплопроводность стала исходным пунктом исследований природы необратимости не раньше, чем была установле­на ее связь с понятием «диссипация», рассматриваемым с инженерной точки зрения4.

Познакомимся несколько подробнее со структурой новой «науки о тепле» в том виде, в каком она сложи­лась в начале XIX в. Подобно механике, наука о тепле включала в себя и оригинальную концепцию физическо­го объекта, и определение машины, или двигателя, т. е. отождествление причины и следствия в специфическом способе производства механической работы.

При исследовании физических процессов, связанных с теплом, состояние системы необходимо задавать, ука­зывая не положения и скорости ее составных частей (в объеме газа порядка 1 см3 содержится около 1023 мо­лекул), как в случае динамики, а некоторую совокуп­ность макроскопических параметров, таких, как темпера­тура, давление, объем и т. д. Кроме того, необходимо учитывать граничные условия, описывающие отношение системы к окружающей среде.

В качестве примера рассмотрим одно из характер­ных свойств макроскопической системы — ее удельную теплоемкость. Напомним, что удельной теплоемкостью называется количество тепла, которое необходимо сооб­щить системе, чтобы поднять ее температуру на один градус при постоянном объеме или давлении. Чтобы ис­следовать удельную теплоемкость (например, при посто­янном объеме), систему необходимо привести во взаимо­действие с окружающей средой: система должна полу­чить определенное количество тепла, в то время как объем ее поддерживается постоянным, а температура может изменяться.

В более общем случае систему можно подвергнуть механическому воздействию (например, поддерживать постоянство давления или объема с помощью поршня), тепловому воздействию (подводить к системе или отво­дить от нее некоторое количество тепла) или химическо­му воздействию (создавать поток реагирующих веществ

156

и продуктов реакции между системой и окружающей средой). Как мы уже упоминали, давление, объем, хими­ческий состав и температура являются классическими физико-химическими параметрами, через которые выра­жаются свойства макроскопических систем. Термодина­мику можно определить как науку о корреляции между изменениями этих свойств. Следовательно, термодинами­ческие объекты приводят к новой по сравнению с дина­мическими объектами точке зрения. Цель теории состо­ит не в предсказании поведения системы в терминах взаимодействия частиц, а в предсказании реакции систе­мы на изменения, вводимые нами извне.

Механическое устройство (машина) возвращает в ви­де работы потенциальную энергию, полученную им из внешнего мира. Причина и следствие имеют одинаковую природу и, по крайней мере в идеальном случае, эквива­лентны. Действие тепловой машины, в отличие от меха­нического устройства, сопряжено с материальными изме­нениями состояний, включающими преобразование меха­нических свойств системы, расширением и увеличением объема. Производимую тепловым двигателем работу сле­дует рассматривать как результат подлинного процесса преобразования, а не только передачи движения. Таким образом, тепловая машина — не пассивное устройство. Строго говоря, она производит движение. С этой особен­ностью тепловой машины связана новая проблема: что­бы восстановить способность системы производить дви­жение, ее необходимо возвратить в начальное состояние. Следовательно, необходим второй процесс, второе изме­нение состояния, которое компенсировало бы то измене­ние, которое производит движение. В тепловой машине таким вторым процессом, противоположным первому, является охлаждение системы до начальных значений температуры, давления и объема.

Понятие необратимого процесса было введено в фи­зику в связи с проблемой повышения коэффициента по­лезного действия (кпд) тепловых машин, т. е. отноше­ния между производимом работой и теплом, которое не­обходимо подвести к системе, чтобы осуществить два взаимно компенсирующих, процесса. Мы еще вернемся к вопросу о значении закона Фурье для этой проблемы, но сначала опишем ту существенную роль, которую играет закон сохранения энергии.

157

2. Принцип сохранения энергии

Мы уже отмечали, что в классической динамике энер­гия занимает центральное место. Гамильтониан (сумму кинетической и потенциальной энергий) можно предста­вить в канонических переменных — координатах и им­пульсах. В процессе движения значения канонических переменных изменяются, значение же гамильтониана ос­тается постоянным. Динамическое изменение лишь пере­распределяет относительную значимость потенциальной и кинетической энергий, оставляя неизменной их сумму.

Начало XIX в. совпало с бурным периодом в истории экспериментальной физики5. Нескончаемая вереница от­крытий показала физикам, что движение способно по­рождать не только изменения в относительных положе­ниях тел в пространстве. Новые процессы, открытые в лабораториях, постепенно создали сеть, связавшую во­едино все новые области физики с другими более тради­ционными областями, например с механикой. Одну из таких связей неожиданно обнаружил Гальвани. До него были известны только статические электрические заря­ды. Производя опыты с препаратами лапок лягушек, Гальвани впервые экспериментально наблюдал действие электрического тока. А. Вольта вскоре понял, что «галь­ванические» сокращения лапок лягушки вызывает про­ходящий через них электрический ток. В 1800 г. Вольта построил химическую батарею: стало возможным полу­чать электричество с помощью химических реакций. За­тем был открыт электролиз: электрический ток позволял изменять химическое сродство и проводить химические реакции. Но электрический ток давал также свет и теп­ло, а в 1820 г. Эрстед обнаружил, что электрический ток оказывает действие и на магнитную стрелку. В 1822 г. Зеебек показал, что тепло может быть источником элек­тричества, а в 1834 г. им был открыт способ охлаждения вещества с помощью электричества. В 1831 г. Фарадей индуцировал электрический ток с помощью магнитных эффектов. Так постепенно была открыта целая совокуп­ность новых физических эффектов. Естественнонаучный горизонт расширялся с неслыханной быстротой.

Решающий шаг был сделан в 1847 г. Джоулем: он понял, что связи, обнаруженные между выделением или поглощением тепла, электричеством и магнетизмом, про­теканием химических реакций, а также биологическими

158

объектами, носят характер «превращения». Идея превра­щения, опирающаяся на постулат о количественном со­хранении «чего-то» при его качественных изменениях, обобщает то, что происходит при механическом движе­нии. Как мы уже знаем, полная энергия сохраняется, в то время как потенциальная энергия переходит, пре­вращается в кинетическую, и наоборот. Джоуль опреде­лил общий эквивалент для физико-химических трансфор­маций, что позволило измерить сохраняющуюся величи­ну. Впоследствии6 эта величина стала известна как «энергия». Джоуль установил первую эквивалентность, измерив механическую работу, которую необходимо за­тратить, чтобы поднять температуру данного количества воды на один градус. Так среди ошеломляющего потока новых разнообразных открытий был обнаружен унифи­цирующий элемент. Сохранение энергии при самых раз­личных преобразованиях, претерпеваемых физическими, химическими и биологическими системами, стало путе­водным принципом в исследовании новых процессов.

Неудивительно, что закон сохранения энергии был столь важен для физиков XIX в. Для многих из них он был воплощением единства природы. Это убеждение от­четливо звучит в высказывании Джоуля, выдержанном в традициях английской науки:

«Явления природы, механические, химические или биологические, состоят почти полностью из непрерывно­го превращения тяготения на расстоянии живой силы [кинетической энергии] в тепло, и наоборот. Тем самым поддерживается порядок во Вселенной: ничто не расстрачивается, ничто не утрачивается, а весь механизм при всей своей сложности работает слаженно и гармо­нично. И хотя, как в ужасном видении пророка Иезекииля, «казалось, будто колесо находилось в колесе» (Иезек, 1, 16) и все кажется сложным и вовлеченным в хит­росплетения почти неисчерпаемого многообразия причин, следствий, превращений и выстраивания в определенной последовательности, тем не менее сохраняется идеаль­нейший порядок и все бытие послушно непререкаемой воле бога»7.

Еще более показателен случай немецких ученых Гельмгольца, Майера и Либиха. Все трое принадлежали к культурной традиции, которая отвергла бы взгляды Джоуля с позиций чисто позитивистской практики. В ту пору, когда они совершали свои открытия, ни один из

159

них не был, строго говоря, физиком. Однако их всех ин­тересовала физиология дыхания. Со времен Лавуазье это был своего рода эталон проблемы, в которой функ­ционирование живого существа поддавалось описанию в точных физических и химических терминах, таких, как расход кислорода при горении, выделение тепла и мус­кульная работа. Эта проблема привлекала физиологов и химиков, чуждых чисто умозрительным построениям ро­мантиков и жаждущих внести свой вклад в экспери­ментальную науку. Обстоятельства, при которых эти трое ученых пришли к заключению, что дыхание, да и природа в целом подчиняются универсальной «эквива­лентности», лежащей в основе всех, больших и малых, явлений, позволяют утверждать, что именно немецкой философской традиции открыватели закона сохранения энергии обязаны своей концепцией, совершенно чуждой позитивисткой позиции: все трое без малейших колеба­ний пришли к выводу о всеобщем характере закона со­хранения энергии, о том, что он пронизывает всю приро­ду до мельчайших кирпичиков мироздания.

Особенно замечательным нам представляется случай Майера8. Работая в молодые годы врачом в голланд­ских колониях на Яве, Майер обратил внимание на ярко красный цвет венозной крови у одного из своих пациен­тов. Это наблюдение привело его к заключению, что жи­телям жаркого тропического климата требуется меньше кислорода для поддержания нормальной температуры тела, чем в средних широтах, чем и объясняется яркий цвет их крови. Майер продолжил свои исследования и установил баланс между потреблением кислорода, яв­ляющимся источником энергии, и потреблением энергии, затрачиваемой на поддержание постоянной температуры тела, несмотря на тепловые потери и мышечную работу. Это была счастливая догадка, так как причиной яркого цвета крови пациента вполне могла быть, например, его «лень». Но Майер не остановился на достигнутом и, про­должив свои рассуждения, пришел к заключению, что баланс потребления кислорода и тепловых потерь — не более чем частное проявление существования какой-то неразрушимой «силы», лежащей в основе всех явлений.

Тенденция видеть в явлениях природы продукты ле­жащей в их основе реальности, сохраняющей постоян­ство при всех трансформациях, поразительно напомина­ет идеи Канта. Влияние Канта отчетливо ощущаетс

160

и в другой идее, которую разделяли некоторые физио­логи: в необходимости различать витализм как философ­скую спекуляцию и витализм как проблему научной ме­тодологии. Для тех физиологов, кто придерживался этой точки зрения, даже если бы существовала «жиз­ненная» сила, лежащая в основе функционирования жи­вых организмов, объект физиологии по своей природе оставался бы чисто физико-химическим. По двум на­званным выше причинам кантианство, узаконившее ту систематическую форму, которую приняла математиче­ская физика в XVIII в., по праву может считаться од­ним из источников обновления физики в XIX в.9

Гельмгольц совершенно открыто признавал влияние Канта. Для Гельмгольца закон сохранения энергии был лишь воплощением в физике общего априорного требо­вания, на котором зиждется вся наука, а именно посту­лата о фундаментальной инвариантности, которая кро­ется за всеми трансформациями, происходящими в при­роде:

«Цель указанных* наук заключается в отыскании законов, благодаря которым отдельные процессы в при­роде могут быть сведены к общим правилам и могут быть снова выведены из этих последних. Эти правила, к которым относятся, например, законы преломления или отражения света, закон Мариотта и Гей-Люссака для объема газов, являются, очевидно, не чем иным, как общим видовым понятием, которым охватываются все относящиеся сюда явления. Разыскание подобных законов является делом экспериментальной части наших наук; теоретическая часть старается в то же время опре­делить неизвестные причины явлений из их видимых действий; она стремится понять их из закона причин­ности.

Мы вынуждены были так поступать и имеем на это право благодаря основному закону, по которому всякое изменение в природе должно иметь достаточное осно­вание. Ближайшие причины, которым мы подчиняем естественные явления, могут быть в свою очередь не­изменными или изменяющимися. В последнем случае тот же закон принуждает нас искать другие причины этого изменения и так далее до тех пор, пока мы не доходим до последних причин, которые действуют по

* Физических, естественных. — Прим. перев.

161

неизменному закону и которые, следовательно, в каждое время при одинаковых условиях вызывают одно и то же действие. Конечной целью теоретического естество­знания и является, таким образом, разыскание послед­них неизменных причин явлений в природе»10.

С появлением закона сохранения энергии начала формироваться идея о новом золотом веке физики, ко­торый должен был бы в конечном счете привести к наи­более широкому обобщению механики.

Открытие закона сохранения энергии имело далеко идущие культурные последствия. В их число входило и представление об обществе и человеке как о машинах, преобразующих энергию. Но превращение энергии не может быть конечным звеном цепи. Оно отражает пас­сивные и управляемые аспекты природы, но за ними должен находиться еще один более «активный» уровень. Ницше был одним из тех, кто уловил эхо актов творе­ния и разрушения, выходящих за рамки одного лишь сохранения или превращения. Результаты, являющиеся различиями, могут порождать только различие, напри­мер разность температур или уровней потенциальной энергии11. Превращение энергии есть всего лишь унич­тожение одного различия с одновременным созданием другого. Сила природы оказывается, таким образом, скрытой использованием эквивалентностей. Но суще­ствует другой аспект природы, имеющий непосредствен­ное отношение к котлам паровых двигателей, химиче­ским превращениям, жизни и смерти и выходящий за рамки эквивалентностей и сохранения энергии12. Говоря об этом аспекте, мы подходим к самому важному вкла­ду термодинамики в естествознание — понятие необра­тимости.

3. Тепловые машины и стрела времени

Сравнивая механические устройства с тепловыми машинами, например с паровозными котлами с их рас­каленными докрасна топками, мы наглядно видим брешь, отделяющую классический век от технологии XIX в. Тем не менее физики поначалу думали, что эту брешь можно игнорировать, что тепловые машины удастся описывать так же, как некогда механические, пренебре­гая тем решающим фактом, что использованное тепло-

162

вой машиной горючее исчезает навсегда. Но вскоре по­добному благодушию пришел конец. Для классической механики символом природы были часы, для индустри­ального века таким символом стал резервуар энергии, запас которого всегда грозил иссякнуть. Мир горит как огромная печь; энергия, хотя она и сохраняется, непре­рывно рассеивается.

Первоначальную формулировку второго начала тер­модинамики, которая позволила впервые количественно выразить необратимость, предложил в 1824 г. Сади Карно — до того, как Майер (1842) и Гельмгольц (1847) сформулировали в общем виде закон сохранения энер­гии. Карно, продолжая работу своего отца Лазара Карно, автора весьма авторитетного трактата по теории машин (механических устройств), занимался анализом работы тепловой машины.

При описании механических устройств движение предполагается заданным. На современном языке это соответствует сохранению энергии и импульса. Движение лишь претерпевает превращения и передается другим телам. Но аналогия между механическим устройством и тепловой машиной была естественной для Сади Кар­но, поскольку он, как и большинство ученых его време­ни, предполагал, что тепло сохраняется подобно тому, как сохраняется механическая энергия.

Вода, падающая с одного уровня на другой, способ­на приводить в движение мельничное колесо. Аналогич­ным образом Сади Карно предположил, что существуют два источника, один из которых отдает тепло системе двигателя, а второй, находящийся при другой темпера­туре, поглощает тепло, отданное первым. Таким обра­зом, работу тепловой машины Сади Карно представил как движение тепла через машину между двумя источ­никами, находящимися при различных температурах. Иначс говоря, работу, производимую машиной, по Кар­но, совершает движущая сила огня.

Сади Карно поставил перед собой те же вопросы, какие задавал его отец13. У какой машины коэффициент полезного действия будет наиболее высоким? Каковы источники потерь? При каких процессах тепло распро­страняется, не производя работы? Лазар Карно пришел к заключению, что для достижения наивысшего коэф­фициента полезного действия при постройке и эксплуа­тации механического устройства следует сводить до ми-

163

Рис. 2. Цикл Карно на диаграмме давление—объем (идеаль­ная тепловая машина, функционирующая между двумя источниками: нагревателем при температуре ТH и холодильником при температуре tl, TH>Tl.). При переходе из состояния a в состояние b происходит изотермический процесс: система, температура которой поддержи­вается равной температуре нагревателя Тн, поглощает тепло и рас­ширяется. При переходе из состояния b в состояние с происходит адиабатический процесс: теплоизолированная система продолжает расширяться и температура понижается с ТH до tl. На этих двух стадиях система производит механическую работу. При переходе из состояния с в состояние d происходит еще один изотермический процесс: система, температура которой поддерживается равной тем­пературе холодильника tl, сжимается и выделяет тепло. При пере­ходе из состояния d в а происходит еще один адиабатический пропесс: теплоизолированная система сжимается и температура ее по­вышается с tl до ТH.

нимума удары, трение и резкие, скачкообразные изме­нения скорости, т. е., короче говоря, все, что происходит при внезапном соприкосновении тел, движущихся с раз­личными скоростями. Рассуждая так, Лазар Карно лишь следовал физике своего времени, считавшей, что только непрерывные изменения консервативны, а все скачко­образные изменения движения сопряжены с необрати-

164

мой потерей «живой силы». Заключение Сади Карно было аналогичным: идеальная тепловая машина вместо того, чтобы избегать любых контактов между телами, движущимися с различными скоростями, должна избе­гать любых контактов между телами, имеющими раз­личные температуры.

Следовательно, рассуждал Сади Карио, цикл необ­ходимо строить так, чтобы ни одно изменение темпера­туры не было обусловлено прямым потоком тепла меж­ду двумя телами, находящимися при различных темпе­ратурах. Поскольку такие потоки не производили бы никакой механической работы, они приводили бы только к снижению кпд.

Идеальный цикл Kарно представляет собой, таким образом, весьма хитроумное приспособление, позволяю­щее достигать парадоксального результата: переноса тепла между двумя источниками, находящимися при различных температурах, без прямого контакта между телами с различной температурой. Цикл Карно подраз­деляется на четыре стадии. На каждой из двух изотер­мических стадий система находится в контакте с одним из двух тепловых источников, а ее температура поддер­живается равной температуре этого источника. Нахо­дясь в контакте с горячим источником (нагревателем), система поглощает тепло и расширяется. Находясь в контакте с холодным источником (холодильником), си­стема теряет тепло и сжимается. Две изотермические стадии связаны между собой двумя стадиями, на кото­рых система изолирована от источников, т. е. тепло не поступает в систему и не покидает ее, но температура системы изменяется в результате соответственно рас­ширения и сжатия. Объем продолжает изменяться до тех нор, пока система не перейдет от температуры од­ного источника к температуре другого.

Весьма замечательно, что в приведенном выше опи­сании идеальной тепловой машины ни разу не упомина­ются лежащие в основе его реализации необратимые процессы. Ни слова не говорится о печи, в которой сго­рает уголь. Предложенная Сади Карно модель отража­ет лишь конечный результат горения: возможность под­держания разности температур между двумя источни­ками.

В 1850 г. Клаузиус дал новое описание цикла Кар­но — с точки зрения закона сохранения энергии. Он об-

165

наружил, что необходимость в двух тепловых источниках (нагревателе и холодильнике) и выведенная Карно фор­мула для теоретического кпд отражают проблему, спе­цифическую для тепловых машин: необходимость про­цесса, компенсирующего превращение (в случае цикла Карно — охлаждение в контакте с источником, находя­щимся при более низкой температуре), для того чтобы вернуть машину к начальным механическим и тепловым условиям. Соотношения баланса, выражающие превра­щения энергии, оказались теперь объединенными новы­ми отношениями эквивалентности между воздействиями двух процессов — потока тепла между источниками и превращения тепла в работу — на состояние системы. Новая наука — термодинамика, — установившая связь между механическими и тепловыми эффектами, обрела существование.

Работа Клаузиуса наглядно показала, что мы не можем неограниченно использовать, казалось бы, не­ограниченный резервуар энергии, который предоставляет нам природа. Не все процессы, при которых энергия сохраняется, возможны. Например, невозможно создать разность энергий, не уничтожив при этом по крайней мере ее эквивалентность. В идеальном цикле Карно тепло, переносимое от одного источника к другому, есть та цена, которую приходится платить за производимую работу. Осуществив цикл Карно, мы получаем, с одной стороны, произведенную механическую работу, а с дру­гой стороны, перенос тепла, причем то и другое связа­но между собой отношением эквивалентности. Эта эк­вивалентность действует в обоих отношениях. Обрат­ным ходом та же машина может восстановить началь­ную разность температур, затратив произведенную ра­боту. Невозможно построить тепловую машину только с одним источником тепла.

Клаузиуса так же, как и Карно, не интересовали потери, за счет которых кпд всех реальных тепловых машин ниже предсказываемого теорией идеального зна­чения. Теория Клаузиуса так же, как и теория Карно, отвечает некоторой идеализации. Она указывает лишь предел, который устанавливает природа для эффектив­ности тепловых машин.

Но с XVIII в. статус идеализации изменился. Опи­раясь на закон сохранения энергии, новое естествозна­ние стало претендовать на описание не только идеали-

166

заций, но и самой природы, включая «потери». Возник­ла новая проблема, и в физику вошла необратимость. Как описать то, что происходит в реальной машине? Как включить в баланс энергии потери? Насколько сни­жают потери кпд реальной машины? Ответы на все эти вопросы проложили путь ко второму началу термоди­намики.

4. От технологии к космологии

Как мы уже знаем, вопрос, поднятый Карно и Клаузиусом, привел к теории идеальных тепловых машин, основанной на сохранении энергии и компенсации. Кро­ме того, стало возможным ставить (и решать) новые проблемы, такие, как диссипация энергии. Уильям Томсон, питавший глубочайшее уважение к работе Фурье, быстро осознал важность этой проблемы и в 1852 г. первым сформулировал второе начало термодинамики.

На теплопроводность, математическую теорию кото­рой построил Фурье, Карно указал как на возможную причину энергетических потерь в тепловом двигателе. Так цикл Карно, уже более не идеальный, а «реальный», стал точкой конвергенции двух универсалий, открытых в XIX в.: превращения энергии и теплопроводности. Со­четание этих двух открытий привело Томсона к форму­лировке его нового принципа: существования в природе универсальной тенденции к деградации механической энергии. Обращаем особое внимание на слово «универ­сальная», перекликающееся со словом «универсум», т. е. весь мир, или Вселенная.

Мир Лапласа был идеальным вечным двигателем. Начиная с Томсона, космология перестает быть только отражением нового идеального теплового двигателя, но и включает последствии необратимого распространения тепла в мире, в котором энергия сохраняется. Этот мир космология Томсопа описывала как машину, в которой тепло превращается в движение лишь ценой определен­ных необратимых потерь и бесполезной диссипации. Со­ответственно уменьшились различия в природе, способ­ные производить механический эффект. Мир использует эти различия при переходе от одного превращения к другому и стремится к конечному состоянию теплового равновесия — «тепловой смерти». В соответствии с за­коном Фурье при достижении миром конечного состоя-

167

ния исчезнут всякие различия в температуре, способные производить механический эффект.

Томсон совершил головокружительный прыжок от технологии тепловой машины к космологии. В своей формулировке второго начала термодинамики он исполь­зовал научную терминологию середины XIX в.: «сохра­нение энергии», «тепловой двигатель», «закон Фурье». Немаловажную роль сыграла и культурная среда, в ко­торой было совершено открытие. Общепризнано, что в XIX в. проблема времени приобрела новое значение. Существенную роль времени начали отмечать во всех областях: в геологии, биологии, языкознании, социоло­гии и этике. Вместе с тем интересно отметить, что та специфическая форма, в которой время вошло в физику, именно как тенденция к однородности и смерти, в боль­шей мере напоминает о древних мифологических и ре­лигиозных архетипах, чем о все нарастающем усложне­нии и многообразии, описываемыми биологией и соци­альными науками. Возвращение этих древних тем мож­но рассматривать как культурный отзвук социальных и экономических сдвигов времени. Быстрая трансфор­мация технологического способа взаимодействия с при­родой, постоянно нарастающий темп изменения, с кото­рым столкнулся XIX век, не могли не вызвать тревогу. Это беспокойство не оставляет и нас и принимает самые различные формы в виде повторяющихся призывов к «нулевому росту» общества или к мораторию на науч­ные исследования до провозглашения «научных истин» относительно нашего распадающегося мира. Современ­ные знания в области астрофизики все еще остаются скудными и во многом проблематичными. Трудность продвижения в этой области физики отчасти обуслов­лена тем, что в астрофизике гравитационные эффекты играют существенную роль и проблемы требуют одно­временного использования термодинамики и теории от­носительности. Тем не менее большинство работ в этой области с удивительным единодушием предсказывает грядущую катастрофу... Одна из последних книг на эту тему рисует такую картину:

«Неприятная истина состоит, по-видимому, в том, что неумолимый распад нашей Вселенной, насколько мы можем судить, неизбежен; организация, охватываю­щая всякую упорядоченную деятельность от людей до галактик, медленно, но неизбежно деградирует и может

168

назад содержание далее



ПОИСК:




© FILOSOF.HISTORIC.RU 2001–2021
Все права на тексты книг принадлежат их авторам!

При копировании страниц проекта обязательно ставить ссылку:
'Электронная библиотека по философии - http://filosof.historic.ru'
Сайт создан при помощи Богданова В.В. (ТТИ ЮФУ в г.Таганроге)


Поможем с курсовой, контрольной, дипломной
1500+ квалифицированных специалистов готовы вам помочь