Библиотека    Новые поступления    Словарь    Карта сайтов    Ссылки





назад содержание далее

Ч.2 с194-215

мы обратили внимание в гл. 4, остается в силе. Между появлением естественных организованных форм, с одной стороны, и тенденцией к «забыванию» начальных усло­вий наряду с возникающей при этом дезорганизацией — с другой, все еще существует зияющая брешь.

3. Вдали от равновеси

У истоков нелинейной термодинамики лежит нечто совершенно удивительное, факт, который на первый взгляд легко принять за неудачу: несмотря на все по­пытки, обобщение теоремы о минимуме производства энтропии для систем, в которых потоки уже не являются более линейными функциями сил, оказалось невозмож­ным. Вдали от равновесия система по-прежнему может эволюционировать к некоторому стационарному состоя­нию, но это состояние, вообще говоря, уже не опреде­ляется с помощью надлежаще выбранного потенциала (аналогичного производству энтропии для слабо нерав­новесных состояний).

Отсутствие потенциальной функции ставит перед на­ми вопрос: что можно сказать относительно устойчиво­сти состояний, к которым эволюционирует система? Действительно, до тех пор пока состояние-аттрактор оп­ределяется минимумом потенциала (например, производ­ство энтропии), его устойчивость гарантирована. Прав­да, флуктуация может вывести системы из этого мини­мума. Но тогда второе начало термодинамики вынудит систему вернуться в исходный минимум. Таким образом, существование термодинамического потенциала делает систему «невосприимчивой» к флуктуациям. Располагая потенциалом, мы описываем «стабильный мир», в кото­ром системы, эволюционируя, переходят в статичное со­стояние, установленное для них раз и навсегда.

Но когда термодинамические силы, действуя на си­стему, становятся достаточно «большими» и вынуждают ее покинуть линейную область, гарантировать устойчи­вость стационарного состояния или его независимость от флуктуации было бы опрометчиво. За пределами линей­ной области устойчивость уже не является следствием общих законов физики. Необходимо специально изучать, каким образом стационарное состояние реагирует на раз­личные типы флуктуации, создаваемых системой или окружающей средой. В некоторых случаях анализ при-

194

водит к выводу, что состояние неустойчиво. В таких со­стояниях определенные флуктуации вместо того, чтобы затухать, усиливаются и завладевают всей системой, вынуждая ее эволюционировать к новому режиму, кото­рый может быть качественно отличным от стационарных состояний, соответствующих минимуму производства энтропии.

Термодинамика позволяет высказать исходное общее заключение относительно систем, в поведении которых могут обнаружиться отклонения от того типа порядка, который диктуется равновесным состоянием. Такие си­стемы должны быть сильно неравновесными. В тех слу­чаях, когда возможна неустойчивость, необходимо ука­зать порог, расстояние от равновесия, за которым флук­туации могут приводить к новому режиму, отличному от «нормального» устойчивого поведения, характерного для равновесных или слабо неравновесных систем.

Чем такой вывод интересен?

Такого рода явления хорошо известны в гидродина­мике — теории течений. Например, давно известно, что при определенной скорости ламинарное течение может смениться турбулентным. По свидетельству Мишеля Серра4, древние атомисты уделяли турбулентному тече­нию столь большое внимание, что турбулентность с пол­ным основанием можно считать основным источником вдохновения физики Лукреция. Иногда, писал Лукреций, в самое неопределенное время и в самых неожиданных местах вечное и всеобщее падение атомов испытывает слабое отклонение — «клинамен». Возникающий вихрь дает начало миру, всем вещам в природе. «Клинамен», спонтанное непредсказуемое отклонение, нередко под­вергали критике как одно из наиболее уязвимых мест в физике Лукреция, как нечто, введенное ad hoc. В действительности же верно обратное: «клинамен» представляет собой попытку объяснить такие явления, как потеря устойчивости ламинарным течением и его спонтанный переход в турбулентное течение. Современ­ные специалисты по гидродинамике проверяют устойчи­вость течения жидкости, вводя возмущение, выражаю­щее влияние молекулярного хаоса, который накладыва­ется на среднее течение. Не так уж далеко мы ушли от «клинамена» Лукреция!

Долгое время турбулентность отождествлялась с хао­сом или шумом. Сегодня мы знаем, что это не так. Хот

195

в макроскопическом масштабе турбулентное течение ка­жется совершенно беспорядочным, или хаотическим, в микроскопическом масштабе оно высокоорганизованно. Множество пространственных и временных масштабов, на которых разыгрывается турбулентность, соответствует когерентному поведению миллионов и миллионов моле­кул. С этой точки зрения переход от ламинарного тече­ния к турбулентности является процессом самоорганиза­ции. Часть энергии системы, которая в ламинарном те­чении находилась в тепловом движении молекул, перехо­дит в макроскопическое организованное движение.

Еще одним поразительным примером неустойчивости стационарного состояния, приводящей к явлению спон­танной самоорганизации, может служить так называе­мая неустойчивость Бенара. Она возникает в горизон­тальном слое жидкости с вертикальным градиентом тем­пературы. Нижняя поверхность слоя жидкости нагрева­ется до заданной температуры, более высокой, чем тем­пература верхней поверхности. При таких граничных ус­ловиях в слое жидкости устанавливается стационарный поток тепла, идущий снизу вверх. Когда приложенный градиент температуры достигает некоторого порогового значения, состояние покоя жидкости (стационарное со­стояние, в котором перенос тепла осуществляется толь­ко с помощью теплопроводности, без конвекции) стано­вится неустойчивым. Возникает конвекция, соответст­вующая когерентному, т. е. согласованному, движению ансамблей молекул; при этом перенос тепла увеличива­ется. Следовательно, при заданных связях (величине градиента температуры) производство энтропии в систе­ме возрастает, что противоречит теореме о минимуме производства энтропии. Неустойчивость Бенара — явле­ние весьма впечатляющее. Конвективное движение жид­кости порождает сложную пространственную организа­цию системы. Миллионы молекул движутся согласован­но, образуя конвективные ячейки в форме правильных шестиугольников некоторого характерного размера.

В гл. 4 мы ввели принцип порядка Больцмана, уста­навливающий связь энтропии с вероятностью (числом комплексов Р). Применимо ли это соотношение в дан­ном случае? Каждому распределению скоростей молекул соответствует некоторое число комплексов. Оно показы­вает, сколькими способами мы можем реализовать тре­буемое распределение скоростей, придавая каждой мо-

196

лекуле некоторую скорость. Все рассуждения аналогич­ны приведенным в гл. 4 при подсчете числа комплексов как функции от распределения молекул между двумя отделениями ящика. В случае неустойчивости Бенара число комплексов также велико в случае хаоса, т. е. значительного разброса скоростей. Наоборот, когерент­ное движение означает, что многие молекулы движутся почти с одинаковыми скоростями (разброс скоростей мал). Такому распределению соответствует столь малое число комплексов Р, что вероятность возникновения са­моорганизации почти равна пулю. И все же самооргани­зация происходит! Мы видим, таким образом, что под­счет числа комплексов, исходящий из гипотезы об апри­орном равнораспределении вероятностей молекулярных состояний, приводит к неверным выводам. То, что он не соответствует истинному положению вещей, становится особенно заметным, если мы обратимся к происхожде­нию нового режима. В случае неустойчивости Бенара это — флуктуация, микроскопическое конвективное тече­ние, которое, если верить принципу порядка Больцмана, обречено на вырождение, но вопреки ему усиливается и завладевает всей системой. Таким образом, за критиче­ским значением приложенного градиента спонтанно ус­танавливается новый молекулярный порядок. Он соот­ветствует гигантской флуктуации, стабилизируемой об­меном энергией с внешним миром.

В сильно неравновесных условиях понятие вероятно­сти, лежащее в основе больцмановского принципа по­рядка, становится неприменимым: наблюдаемые струк­туры не соответствуют максимуму комплексов. Не соот­ветствует максимум комплексов и минимуму свободной энергии F=E—TS. Тенденция к выравниванию и «забы­ванию» начальных условий перестает быть общей тен­денцией. В этом смысле старая проблема происхожде­ния жизни предстает в ином свете. Заведомо ясно, что жизнь несовместима с принципом порядка Больцмана, но не противоречит тому типу поведения, который уста­навливается в сильно неравновесных условиях.

Классическая термодинамика приводит к понятию равновесной структуры, примером которой может слу­жить любой кристалл. Ячейки Бенара также представ­ляют собой структуры, но совершенно иной природы. Именно поэтому мы ввели новое понятие — диссипативная структура, чтобы подчеркнуть тесную и на первый

197

взгляд парадоксальную взаимосвязь, существующую в таких ситуациях, с одной стороны, между структурой и порядком, а с другой — между диссипацией, или потеря­ми. В гл. 4 мы видели, что в классической термодинами­ке тепловой поток считался источником потерь. В ячей­ке Бенара тепловой поток становится источником по­рядка.

Таким образом, взаимодействие системы с внешним миром, ее погружение в неравновесные условия может стать исходным пунктом в формировании новых динами­ческих состояний — диссипативных структур. Диссипативная структура отвечает некоторой форме супермоле­кулярной организации. Хотя параметры, описывающие кристаллические структуры, могут быть выведены из свойств образующих их молекул, и в частности из радиу­са действия сил взаимного притяжения и отталкивания, ячейки Бенара, как и все диссипативные структуры, по существу, отражают глобальную ситуацию в порождаю­щей их неравновесной системе. Описывающие их пара­метры макроскопические — порядка не 10-8см (как рас­стояния между молекулами в кристалле), а нескольких сантиметров. Временные масштабы также другие: они соответствуют не молекулярным масштабам (напри­мер, периодам колебаний отдельных молекул, т. е. по­рядка 10-15с), а макроскопическим, т. е. секундам, ми­нутам или часам.

Но вернемся к химическим реакциям. Они обладают некоторыми весьма важными отличиями от проблемы Бенара. В ячейке Бенара неустойчивость имеет простое механическое происхождение. Когда мы нагреваем жид­кость снизу, нижний слой жидкости становится менее плотным и центр тяжести перемещается вверх. Неудиви­тельно поэтому, что за критической точкой система «оп­рокидывается» и возникает конвекция.

Химические системы не обладают такого рода меха­ническими свойствами. Можно ли ожидать явления са­моорганизации в химических системах? Мысленно мы представляем себе химические реакции так: во всех на­правлениях в пространстве несутся молекулы веществ и случайным образом сталкиваются. В такой картине не остается места для самоорганизации, и, быть может, в этом заключается одна из причин, по которым химиче­ские неустойчивости лишь недавно начали привлекать внимание исследователей. Имеется и еще одно отличие.

198

Рис. 4. Каталитические петли соответствуют нелинейным чле­нам. В задаче с одной независимой переменной нелинейность озна­чает, что имеется по крайней мере один член, содержащий незави­симую переменную в степени выше 1. В этом простейшем случае нетрудно проследить за тем, какая связь существует между нелиней­ными членами и потенциальной неустойчивостью стационарных со­стояний.

Предположим, что для независимой переменной Х выполняется эволюционное уравнение dX/dt=f(X). Функцию f(X) всегда можно разложить в разность двух функций: f+(X), соответствующую при­были («наработке» вещества), и f-(X), соответствующую убытку (расходу вещества), каждая из которых положительна или равна 0, т. е. представить в виде f(X)=f+(X)—f-(X). Стационарные состоя­ния dX/dt=0 соответствуют значениям X, при которых f+(X)=f-(X).

Равенство f+(X)=f-(X) означает, что стационарные состояния можно найти, построив точки пересечения графиков функций f+ и f-. Если f+ и f- линейны, то их графики могут пересекаться только в одной точке. В противном случае характер пересечения позволяет сделать выводы об устойчивости соответствующего стационарного состояния.

Возможны следующие четыре случая:

SI. Стационарное состояние устойчиво относительно отрицатель­ных флуктуации и неустойчиво относительно положительных флук­туации. Если систему слегка отклонить влево от SI, то положитель­ная разность между f+ и f- вынудит систему вернуться в SI. Если же систему отклонить вправо от SI, то отклонение будет нарастать.

SS. Стационарное состояние устойчиво как относительно поло­жительных, так и относительно отрицательных флуктуации.

IS. Стационарное состояние устойчиво только относительно по­ложительных флуктуаций.

II. Стационарное состояние неустойчиво как относительно поло­жительных, так и относительно отрицательных флуктуаций.

199

Все течения достаточно далеко от равновесия становят­ся турбулентными (порог измеряется в безразмерных числах, например в числах Рейнольдса). Химические реакции ведут себя иначе. Для них большая удален­ность от состояния равновесия — условие необходимое, но не достаточное. Во многих химических системах, ка­кие бы связи на них ни накладывались и как бы ни из­менялись скорости реакций, стационарное состояние ос­тается устойчивым и произвольные флуктуации затуха­ют, как в слабо неравновесной области. В частности, так обстоит дело в системах, в которых наблюдается цепь последовательных превращений типа A®B®C®D®..., описываемая линейными дифференциальными уравне­ниями.

Судьба флуктуаций, возмущающих химическую си­стему, а также новые ситуации, к которым она может эволюционировать, зависят от детального механизма хи­мических реакций. В отличие от систем в слабо неравно­весной области поведение сильно неравновесных систем весьма специфично. В сильно неравновесной области не существует универсального закона, из которого можно было бы вывести заключение относительно поведения всех без исключения систем. Каждая сильно неравновес­ная система требует особого рассмотрения. Каждую си­стему химических реакций необходимо исследовать осо­бо — поведение ее может быть качественно отличным от поведения других систем.

Тем не менее один общий результат все же был полу­чен, а именно: выведено необходимое условие химиче­ской неустойчивости. В цепи химических реакций, про­исходящих в системе, устойчивости стационарного со­стояния могут угрожать только стадии, содержащие ав­токаталитические петли, т. е. такие стадии, в которых продукт реакции участвует в синтезе самого себя. Этот вывод интересен тем, что вплотную подводит нас к фун­даментальным достижениям молекулярной биологии (рис. 4).

4. За порогом химической неустойчивости

Изучение химических неустойчивостей в наши дни стало довольно обычным делом. И теоретические, и экс­периментальные исследования ведутся во многих инсти­тутах и лабораториях. Как мы увидим, эти исследовани

200

представляют интерес для широкого круга ученых — не только для математиков, физиков, химиков и биологов, но и для экономистов и социологов.

В сильно неравновесных условиях за порогом хими­ческой неустойчивости происходят различные новые яв­ления. Для того чтобы описать их подробно, полезно на­чать с упрощенной теоретической модели, разработан­ной в последнее десятилетие в Брюсселе. Американские ученые назвали эту модель «брюсселятором», и это на­звание так и прижилось в научной литературе. (Геогра­фические ассоциации, по-видимому, стали правилом в этой области: помимо «брюсселятора», существует «оре-гонатор» и даже самый юный «палоальтонатор»!) Опи­шем кратко «брюсселятор». Ранее мы уже отмечали те стадии реакции, которые ответственны за неустойчи­вость (см. рис. 3). Вещество Х образуется из вещества А и превращается в вещество Е. Оно является «партне­ром» по кросс-катализу вещества Y: Х образуется из Y в результате тримолекулярной стадии, а Y образуется в результате реакции между Х и веществом В.

В этой модели концентрации веществ A, В, D и Е за­даны (и являются так называемыми управляющими па­раметрами). Поведение системы исследуется при возрас­тающих значениях В. Концентрация А поддерживается постоянной. Стационарное состояние, к которому с наи­большей вероятностью эволюционирует такая система (состояние с dX/dt=dY/dt=0), соответствует концентра­циям Х0=А и Y0=B/A. В этом нетрудно убедиться, если выписать кинетические уравнения и найти стационарное состояние. Но как только концентрация В переходит критический порог (при прочих равных параметрах), это стационарное состояние становится неустойчивым. При переходе через критический порог оно становится неус­тойчивым фокусом, и система, выходя из этого фокуса, выходит, или «наматывается», на предельный цикл. Вместо того чтобы оставаться стационарными, концент­рации Х и Y начинают колебаться с отчетливо выражен­ной периодичностью. Период колебаний зависит от кине­тических постоянных, характеризующих скорость реак­ции, и граничных условий, наложенных на всю систему (температуры, концентрации веществ A, B и т. д.).

За критическим порогом система под действием флук­туаций спонтанно покидает стационарное состояние Х0=A, Y0=В/A. При любых начальных условиях она стре-

201

Рис. 5. Зависимость концентрации компоненты Х от концентра­ции компоненты Y. Фокус внутри цикла (точка S) — стационарное состояние, неустойчивое при B>(1+A2). Все траектории (пять из которых представлены на графике) при любом начальном состоянии стремятся к одному и тому же предельному циклу.

мится выйти на предельный цикл, периодическое движе­ние по которому устойчиво. В результате мы получаем периодический химический процесс — химические часы. Остановимся на мгновение, чтобы подчеркнуть, сколь не­ожиданно такое явление. Предположим, что у нас име­ются молекулы двух сортов: «красные» и «синие». Из-за хаотического движения молекул можно было бы ожи­дать, что в какой-то момент в левой части сосуда ока­жется больше красных молекул, в следующий момент больше станет синих молекул и т. д. Цвет реакционной смеси с трудом поддается описанию: фиолетовый с бес­порядочными переходами в синий и красный. Иную кар­тину мы увидим, разглядывая химические часы: вся реакционная смесь будет иметь синий цвет, затем ее цвет резко изменится на красный, потом снова на синий

202

и т. д. Поскольку смена окраски происходит через пра­вильные интервалы времени, мы имеем дело с когерент­ным процессом.

Столь высокая упорядоченность, основанная на со­гласованном поведении миллиардов молекул, кажется неправдоподобной, и, если бы химические часы нельзя было бы наблюдать «во плоти», вряд ли кто-нибудь по­верил, что такой процесс возможен. Для того чтобы одновременно изменить свой цвет, молекулы должны «каким-то образом» поддерживать связь между собой. Система должна вести себя как единое целое. К ключе­вому слову «связь», обозначающему весьма важное для многих областей человеческой деятельности (от хи­мии до нейрофизиологии) понятие, мы будем еще воз­вращаться неоднократно. Возможно, что именно диссипативные структуры представляют собой один из про­стейших физических механизмов связи (communication).

Между простейшим механическим осциллятором — пружиной — и химическими часами имеется важное различие. Химические часы обладают вполне определенной периодичностью, соответствующей тому предельному циклу, на который наматывается их траектория. Что же касается пружины, то частота ее колебаний зависит от амплитуды. С этой точки зрения химические часы как хранители времени отличаются большей надежностью, чем пружина.

Но химические часы — отнюдь не единственный тип самоорганизации. До сих пор мы пренебрегали диффу­зией. В своих рассуждениях мы неизменно предполагали, что все вещества равномерно распределены по всему реакционному пространству. Разумеется, такое допуще­ние не более чем идеализация: небольшие флуктуации всегда создают неоднородности в распределении кон­центраций и, следовательно, способствуют возникнове­нию диффузии. Следовательно, в уравнениях, описываю­щих химические реакции, необходимо учитывать диффу­зию. Уравнения типа «реакция с диффузией» для «брюсселятора» обладают необычайно богатым запасом реше­ний, отвечающих качественно различным типам поведе­ния системы. Если в равновесном и в слабо неравновес­ном состояниях система остается пространственно одно­родной, то в сильно неравновесной области появление новых типов неустойчивости, в том числе усиление флук­туаций, нарушает начальную пространственную симмет-

203

рию. Таким образом, колебания во времени (химические часы) перестают быть единственным типом диссипативных структур, которые могут возникать в системе; в сильно неравновесной области могут появиться, напри­мер, колебания не только временные, но и пространст­венно-временные. Они соответствуют волнам концентра­ций химических веществ Х и Y, периодически проходя­щим по системе. Кроме того, в системе, особенно в тех случаях, когда коэффициенты диффузии веществ Х и Y сильно отличаются друг от друга, могут устанавливать­ся стационарные, не зависящие от времени режимы и возникать устойчивые пространственные структуры.

Здесь нам необходимо еще раз остановиться: на этот раз для того, чтобы подчеркнуть, как сильно спонтанное образование пространственных структур противоречит законам равновесной физики и принципу порядка Больцмана. И в этом случае число комплексов, соответствую­щих таким структурам, чрезвычайно мало по сравнению с числом комплексов, отвечающих равномерному рас­пределению. Но неравновесные процессы могут приво­дить к ситуациям, кажущимся немыслимыми с класси­ческой точки зрения.

При переходе от одномерных задач к двухмерным или трехмерным число качественно различных диссипативных структур, совместимых с заданным набором гранич­ных условий, возрастает еще больше. Например, в двух­мерной области, ограниченной окружностью, может воз­никнуть пространственно неоднородное стационарное со­стояние с выделенной осью. Перед нами новый, необы­чайно интересный процесс нарушения симметрии, особен­но если мы вспомним, что одна из первых стадий в морфогенезе зародыша — образование градиента в системе. Такого рода проблемы мы еще рассмотрим и в этой гла­ве, и в гл. 6.

До сих пор мы предполагали, что концентрации А, В, D и Е (наши управляющие параметры) равномерно распределены по всей реакционной системе. Стоит лишь нам отказаться от этого упрощения, как возникают но­вые явления. Например, система принимает «естествен­ные размеры», зависящие от определяющих параметров. Тем самым система определяет свой внутренний мас­штаб, т. е. размеры области, занятой пространственными структурами, или часть пространства, в пределах кото­рой проходят периодические волны концентраций.

204

Рис. 6. Химические полны, смоделированные на ЭВМ. Последо­вательные стадии эволюции пространственного распределения кон­центрации компоненты X в тримолекулярной модели «брюсселятор». При t=3,435 восстановилось такое же распределение концентраций, как при t=0. Концентрации компонент А и В равны соответствен­но 2 и 5,45 (В>[1+А2]). Коэффициенты диффузии для Х и Y соот­ветственно равны 8?10-3 и 4?10-3.

205

Рис. 7. Стационарное состояние с выделенной осью (результат численного моделирования). Концентрация X есть функция геомет­рических координат р, q в горизонтальной плоскости. Стрелкой ука­зано место, где было возмущено неустойчивое однородное решение (X0, Y0).

Все перечисленные выше режимы дают весьма непол­ную картину необычайного многообразия явлений, воз­никающих в сильно неравновесной области. Упомянем хотя бы о множественности стационарных состояний. При заданных граничных условиях в сильно нелинейной си­стеме могут существовать не одно, а несколько стационар­ных состояний, например одно состояние с богатым со­держанием вещества X, а другое — с бедным содержани­ем того же вещества. Переход из одного состояния в другое играет важную роль в механизмах управления, встречающихся в биологических системах.

Начиная с классических работ Ляпунова и Пуанкаре, некоторые характерные точки и линии, а именно фокусы и предельные циклы, известны математикам как аттрак­торы устойчивых систем. Новым является то, что эти понятия качественной теории дифференциальных урав-

206

Рис. 8. а) Концентрация иона бромида в реакции Белоусова— Жаботинского в моменты времени t1 и t1+T (см.: Simoyi R. Н., Wolf A., Swinney Н. L. Phys. Rev. Letters, 1982, 49, p. 245; Hirsch J., Condensed Matter Physics и по данным численных расчетов из Physics Today, 1983, May, p. 44—52).

6) Траектории аттрактора, вычисленные Хао Байлинем для «брюсселятора» при периодическом подводе извне компоненты Х (личное сообщение).

нений применимы к химическим системам. В этой связи заслуживает быть особо отмеченным тот факт, что пер­вая работа по математической теории неустойчивостей в системе реакций с диффузией была опубликована Тьюрингом в 1952 г. Сравнительно недавно были обна­ружены новые типы аттракторов. Они появляются толь­ко при большем числе независимых переменных (в «брюсселяторе» число независимых переменных равно двум: это переменные концентрации Х и Y). В частности, в трехмерных системах появляются так на­зываемые странные аттракторы, которым уже не соот­ветствует периодическое движение.

На рис. 8 представлены результаты численных расче­тов Хао Байлиня, дающие общее представление об очень

207

Рис. 9. Схема химического реактора, используемого при иссле­довании колебаний в реакции Белоусова—Жаботинского (однород­ность реакционной смеси обеспечивает перемешивающее устройство). В реакции участвуют более тридцати продуктов и промежуточных соединений. Эволюция различных путей реакции зависит (помимо других факторов) от концентраций исходных веществ, регулируемых насосами на входе в реактор.

сложной структуре такого странного аттрактора для мо­дели, обобщающей «брюсселятор» на случай периодиче­ского подвода извне вещества X. Замечательно, что большинство описанных нами типов поведения реально наблюдалось в неорганической химии и в некоторых био­логических системах.

В неорганической химии наиболее известным приме­ром колебательной системы является реакция Белоусова—Жаботинского, открытая в начале 50-х гг. нашего века. Соответствующая схема реакций, получившая на­звание орегонатор, была предложена Нойесом и сотруд­никами. По существу, она аналогична «брюсселятору», но отличается большей сложностью. Реакция Белоусова—Жаботинского состоит в окислении органической (малоновой) кислоты броматом калия в присутствии со­ответствующего катализатора — церия, марганца или ферроина.

В различных экспериментальных условиях у одной и той же системы могут наблюдаться различные формы самоорганизации — химические часы, устойчивая прост­ранственная дифференциация или образование волн хи­мической активности на макроскопических расстояни­ях5.

Обратимся теперь к самому интересному вопросу: что дают все эти результаты для понимания функциониро­вания живых систем?

208

5. Первое знакомство с молекулярной биологией

Ранее в этой главе мы уже показали, что в сильно неравновесных условиях протекают процессы самоорга­низации различных типов. Одни из них приводят к уста­новлению химических колебаний, другие — к появлению пространственных структур. Мы видели, что основным условием возникновения явлений самоорганизации явля­ется существование каталитических эффектов.

В то время как в неорганическом мире обратная связь между «следствиями» (конечными продуктами) нелинейных реакций и породившими их «причинами» встречается сравнительно редко, в живых системах об­ратная связь (как установлено молекулярной биологи­ей), напротив, является скорее правилом, чем исключе­нием. Автокатализ (присутствие вещества Х ускоряет процесс образования его в результате реакции), автоингибиция (присутствие вещества Х блокирует катализ, необходимый для производства X) и кросс-катализ (каждое из двух веществ, принадлежащих различным цепям реакций, является катализатором для синтеза другого) лежат в основе классического механизма регу­ляции, обеспечивающего согласованность метаболиче­ской функции.

Нам бы хотелось подчеркнуть одно любопытное раз­личие. В примерах самоорганизации, известных из не­органической химии, молекулы, участвующие в реак­циях, просты, тогда как механизмы реакций сложны (например, в реакции Белоусова—Жаботинского уда­лось установить около тридцати различных промежуточ­ных соединений). С другой стороны, во многих примерах самоорганизации, известных из биологии, схема реакции проста, тогда как молекулы, участвующие в реакции веществ (протеинов нуклеиновых кислот и т. д.), весьма сложны и специфичны. Отмеченное нами различие вряд ли носит случайный характер. В нем проявляется некий первичный элемент, присущий различию между физикой и биологией. У биологических систем есть прошлое. Об­разующие их молекулы — итог предшествующей эволю­ции; они были отобраны для участия в автокаталитиче­ских механизмах, призванных породить весьма специ­фические формы процессов организации.

Описание сложной сети метаболической активности

209

и торможения является существенным шагом в понима­нии функциональной логики биологических систем. К последней мы относим включение в нужный момент синтеза необходимых веществ и блокирование тех хими­ческих реакций, неиспользованные продукты которых могли бы угрожать клетке переполнением.

Основной механизм, с помощью которого молекуляр­ная биология объясняет передачу и переработку генети­ческой информации, по существу, является петлей об­ратной связи, т. е. нелинейным механизмом. Дезоксирибонуклеиновая кислота (ДНК), содержащая в линейно упорядоченном виде всю информацию, необходимую для синтеза различных основных протеинов (без которых невозможно строительство и функционирование клетки), участвует в последовательности реакций, в ходе кото­рых вся информация кодируется в виде определенной последовательности различных протеинов. Некоторые ферменты осуществляют обратную связь среди синтези­рованных протеинов, активируя и регулируя не только различные стадии превращений, но и автокаталитиче­ский механизм репликации ДНК, позволяющий копиро­вать генетическую информацию с такой же скоростью, с какой размножаются клетки.

Молекулярная биология — один из наиболее ярких примеров конвергенции двух наук. Понимание процес­сов, происходящих на молекулярном уровне в биологи­ческих системах, требует взаимно дополняющего разви­тия физики и биологии, первой — в направлении слож­ного, второй — простого.

Фактически уже сейчас физика имеет дело с иссле­дованием сложных ситуаций, далеких от идеализации, описываемых равновесной термодинамикой, а молеку­лярная биология добилась больших успехов в установ­лении связи живых структур с относительно небольшим числом основных биомолекул. Исследуя множество са­мых различных химических механизмов, молекулярная биология установила мельчайшие детали цепей метабо­лических реакций, выяснила тонкую, сложную логику регулирования, ингибирования и активации каталитиче­ской функции ферментов, связанных с критическими стадиями каждой из метаболических цепей. Тем самым молекулярная биология установила на микроскопиче­ском уровне основы тех неустойчивостей, которые могут происходить в сильно неравновесных условиях.

210

В некотором смысле живые системы можно сравнить с хорошо налаженным фабричным производством: с од­ной стороны, они являются вместилищем многочислен­ных химических превращений, с другой — демонстри­руют великолепную пространственно-временную органи­зацию с весьма неравномерным распределением биохи­мического материала. Ныне перед нами открывается возможность связать воедино функцию и структуру. Рассмотрим кратко два примера, интенсивно исследо­вавшиеся в последние годы.

Начнем с гликолиза: цепи метаболических реакций, приводящих к расщеплению глюкозы и синтезу аденозинтрифосфата (АТФ) — универсального аккумулятора энергии, общего для всех живых клеток. При расщепле­нии каждой молекулы глюкозы две молекулы АДФ (аденозиндифосфата) превращаются в две молекулы АТФ. Гликолиз может служить наглядным примером взаимной дополнительности аналитического подхода биологии и физического исследования устойчивости в сильно неравновесной области6.

В ходе биохимических экспериментов были обнару­жены колебания во времени концентраций, связанных с гликолитическим циклом7. Было показано, что эти ко­лебания определяются ключевой стадией в цепи реак­ций — стадией, активируемой АДФ и ингибируемой АТФ. Это — типично нелинейное явление, хорошо при­способленное к регулированию метаболизма. Всякий раз, когда клетка черпает энергию из своих энергети­ческих резервов, она использует фосфатные связи, и АТФ превращается в АДФ. Таким образом, накопление АДФ внутри клетки свидетельствует об интенсивном потреблении энергии и необходимости пополнить энер­гетические запасы, в то время как накопление АТФ оз­начает, что расщепление глюкозы может происходить в более медленном темпе.

Теоретическое исследование гликолиза показало, что предложенный механизм действительно может порож­дать концентрационные колебания, т. е. обеспечивать работу химических часов. Вычисленные из теоретических соображений значения концентраций, необходимые для возникновения колебаний, и величина периода цикла согласуются с экспериментальными данными. Гликолитические колебания вызывают модуляцию всех энерге­тических процессов в клетке, зависящих от концентра-

211

ции АТФ, и, следовательно, косвенно влияют на другие метаболические цепи.

Можно пойти еще дальше и показать, что в гликолитическом цикле ход реакций регулируется некоторыми ключевыми ферментами, причем сами реакции проте­кают в сильно неравновесных условиях. Такие расчеты были выполнены Бенно Хессом8, а полученные резуль­таты обобщены и на другие системы. При обычных условиях; гликолитический цикл соответствует химиче­ским часам, но изменение этих условий может привести к образованию пространственных структур в полном соответствии с предсказаниями на основе существующих теоретических моделей.

С точки зрения термодинамики живая система отли­чается необычайной сложностью. Одни реакции проте­кают в слабо неравновесных условиях, другие — в силь­но неравновесных условиях. Не все в живой системе «живо». Проходящий через живую систему поток энер­гии несколько напоминает течение реки — то спокойной и плавной, то низвергающейся водопадом и высвобож­дающей часть накопленной в ней энергии.

Рассмотрим еще один биологический процесс, также исследованный «на устойчивость»: образование колоний у коллективных амеб Dictyostelium discoideum. Этот процесс9А интересен как пример явления, пограничного между одноклеточной и многоклеточной биологией.

Образование колоний у коллективных амеб — один из наиболее ярких примеров явления самоорганизации в биологической системе, в которой важную роль играют химические часы (см. рис. А).

Выйдя из спор, амебы растут и размножаются как одноклеточ­ные организмы. Так продолжается до тех пор, пока пищи (главным образом, бактерий) достаточно. Как только пищевой ресурс исто­щается, амебы перестают репродуцироваться и вступают в промежу­точную фазу, которая длится около восьми часов. К концу этого периода амебы начинают сползаться к отдельным клеткам, выпол­няющим функции центров агрегации. Образование многоклеточных колоний, ведущих себя как единый организм, происходит в ответ на хемотаксические сигналы, испускаемые центрами. Сформировавшаяся колония мигрирует до тех пор, пока не обнаружит участок среды с условиями, пригодными для образования плодового тела. Тогда масса клеток начинает дифференцироваться, образуя стебель, несу­щий на конце мириады спор.

У Dictyostelium. discoideum сползание одноклеточных амеб в многоклеточную колонию происходит не монотонно, а периодически. Как показывает киносъемка процесса образования колоний, сущест­вуют концентрические волны амеб, сходящиеся к центру с периодом

212

в несколько минут. Природа хемотаксического фактора известна. Это циклическая АМФ (цАМФ) — вещество, встречающееся во многих биохимических процессах, например в процессах гормональной регу­ляции. Центры скопления амеб периодически испускают сигналы — порции цАМФ, на которые другие клетки реагируют, перемещаясь к центру и в свою очередь испуская аналогичные сигналы к перифе­рии территории, занимаемой колонией. Существование такого меха­низма передачи хемотаксических сигналов позволяет каждому центру контролировать колонию, состоящую примерно из 105 амеб.

Как показывает анализ модели образования многоклеточной колонии, существуют два типа бифуркаций: во-первых, агрегация сама по себе представляет нарушение пространственной симметрии; во-вторых, происходит нарушение временной симметрии.

Первоначально амебы распределены равномерно. Когда неко­торые из них начинают испускать хемотаксические сигналы, возника­ют локальные флуктуации в концентрации цАМФ. При достижении критического значения некоторого параметра системы (коэффициента диффузии цАМФ, подвижности амеб и т.д.) флуктуации усилива­ются: однородное распределение становится неустойчивым и амебы эволюционируют к неоднородному распределению в пространстве. Это новое распределение соответствует скоплению амеб вокруг цен­тров.

Для того чтобы понять происхождение периодичности в сполза­нии D. discoideum к центрам, необходимо изучить механизм синтеза хемотаксического сигнала. На основе экспериментальных данных этот механизм можно изобразить в виде следующей схемы (рис. В).

На поверхности клетки рецепторы (Р) захватывают молекулы

цАМФ. Рецептор обращен во внеклеточную среду и функционально связан с ферментом аденилатциклазой (Ц), преобразующим внутри­клеточную АТФ в цАМФ (на рис. цАМФ не обозначена). Синтези­рованная цАМФ транспортируется через мембрану во внеклеточную среду, где расщепляется фосфодиэстеразой — ферментом, выде­ляемым амебами. Эксперименты показывают, что захват внемолеку-

214

лярной цАМФ мембранным рецептором активирует аденилатциклазу (положительная обратная связь обозначена знаком +).

Анализ модели синтеза цАМФ на основе такой автокаталитической регуляции позволил унифицировать различные типы поведения, наблюдаемые при образовании колонии коллективных амеб9В.

Двумя ключевыми параметрами модели являются концентрации аденилатциклазы (s) и фосфодиэстеразы (k). На рис. С, заимствован­ном из работы Goldbeter A., Segel L.. Differentiation, 1980, 17, p. 127—135, показано поведение модельной системы в пространстве параметров s и k.

В зависимости от значений s и k все пространство этих парамет­ров подразделяется на три области. Область А соответствует устойчи­вому, невозбудимому стационарному состоянию, область В — устойчивому, но возбудимому стационарному состоянию и область С — режиму незатухающих колебаний вокруг неустойчивого стаци­онарного состояния.

Стрелка указывает возможный «путь развития», соответствую­щий повышению концентрации фосфодиэстеразы (k) и аденилатциклазы (s), наблюдаемому после начала голодания. Переход из об­ласти А в области В и С соответствует наблюдаемым изменениям в поведении: клетки сначала неспособны реагировать на сигналы — внеклеточную цАМФ, затем начинают передавать сигналы дальше и, наконец, обретают способность автономно синтезировать цАМФ в периодическом режиме. Центры колоний являются клетками, для которых параметры k и s быстрее достигают точки внутри области С после начала голодания.

Когда запас питательных веществ в той среде, в ко­торой живут и размножаются коллективные амебы, ис­сякает, происходит удивительная перестройка (рис. А): отдельные клетки начинают соединяться в колонию, на­считывающую несколько десятков тысяч клеток. Обра­зовавшийся «псевдоплазмодий» претерпевает дифферен­циацию, причем очертания его непрерывно изменяются. Образуется «ножка», состоящая примерно из трети всех клеток, с избыточным содержанием целлюлозы. Эта «ножка» несет на себе круглую «головку», напол­ненную спорами, которые отделяются и распространя­ются. Как только споры приходят в соприкосновение с достаточно питательной средой, они начинают размно­жаться и образуют новую колонию коллективных амеб. Перед нами наглядный пример приспособления к окру­жающей среде. Популяция обитает в некоторой области до тех пор, пока не исчерпывает имеющиеся там ресур­сы. Затем она претерпевает метаморфозу, в результате которой обретает способность передвигаться и осваивать другие области.

Исследование первой стадии образования колонии показало, что она начинается с волн перемещения от-

215

назад содержание далее



ПОИСК:




© FILOSOF.HISTORIC.RU 2001–2023
Все права на тексты книг принадлежат их авторам!

При копировании страниц проекта обязательно ставить ссылку:
'Электронная библиотека по философии - http://filosof.historic.ru'