Библиотека    Новые поступления    Словарь    Карта сайтов    Ссылки





назад содержание далее

Ч.3 гл.8. с.293-320

особое значение, и поныне вызывающее значительный интерес. Предположим, что мы начали с волновой функ­ции, которая является в действительности суперпозици­ей собственных функций. В результате процесса изме­рения этот единственный набор систем, представимых одной и той же волновой функцией, заменяется набо­ром волновых функций, соответствующих различным собственным значениям, которые могут быть измерены. На языке квантовой механики это означает, что изме­рение переводит одну волновую функцию («чистое» со­стояние) в смесь («смешанное» состояние).

Бор и Розенфельд10 неоднократно отмечали, что каждое измерение содержит элемент необратимости, т. о. апеллировали к необратимым явлениям (таким, как химические процессы), соответствующим записи, или регистрации, данных. Запись сопровождается уси­лением, в результате которого микроскопическое явле­ние производит эффект на макроскопическом уровне, т. е. на том самом уровне, на котором мы считываем показания измерительных приборов. Таким образом, измерение предполагает необратимость.

В определенном смысле это утверждение было спра­ведливо и в классической физике. Но проблема необ­ратимого характера измерения в квантовой механике приобрела большую остроту, поскольку затрагивает вопросы на уровне формулировки квантовой механики.

Обычный подход к этой проблеме сводится к ут­верждению о том, что у квантовой механики нет иного выбора, как постулировать сосуществование двух пер­вичных и не сводимых друг к другу процессов: обрати­мой и непрерывной эволюции, описываемой уравнением Шредингера, и необратимой и дискретной редукции волновой функции к одной из входящих в нее собствен­ных функций в момент измерения. Возникает парадокс: обратимое уравнение Шредингера может быть провере­но лишь с помощью необратимых измерений, которые это уравнение, по определению, не может описывать. Следовательно, квантовая механика не может быть замкнутой теорией.

Столкнувшись со столь большими трудностями, не­которые физики в очередной раз попытались искать убежище в субъективизме, утверждая, что мы сами (наше измерение и даже, по мнению некоторых, наш разум) определяем эволюцию системы, нарушающую

293

естественную «объективную» обратимость11. Другие физики пришли к выводу, что уравнение Шредингера «не полно» и в него необходимо ввести новые члены, которые бы учитывали необратимость измерения. Пред­лагались и менее правдоподобные решения проблемы, такие, как гипотеза многих миров Эверетта (см. книгу д'Эспаньи, указанную в прим. 8). Однако для нас со­существование в квантовой механике обратимости и необратимости свидетельствует о том, что классическая идеализация, описывающая мир как замкнутую си­стему, на микроскопическом уровне невозможна. Имен­но это имел в виду Бор, когда заметил, что язык, ис­пользуемый нами для описания квантовой системы, не­отделим от макроскопических понятий, описывающих функционирование наших измерительных приборов. Уравнение Шредингера описывает не какой-то особый уровень реальности. В его основе лежит скорее пред­положение о существовании макроскопического мира, которому принадлежим мы сами.

Таким образом, проблема измерения в квантовой ме­ханике является аспектом одной из проблем, которым посвящена наша книга, — взаимосвязи между простым миром, описываемым гамильтоновыми траекториями и уравнением Шредингера, и сложным макроскопическим миром необратимых процессов.

В гл. 9 мы увидим, что необратимость входит в классическую физику, когда идеализация, в основе ко­торой заложено понятие траектории, становится неадек­ватной. Проблема измерения в квантовой механике до­пускает решение того же типа12. Действительно, волно­вая функция представляет максимум того, что нам из­вестно о квантовой системе. Как в классической физи­ке, объект этого максимального знания удовлетворяет обратимому эволюционному уравнению. В обоих случа­ях необратимость возникает, когда идеальный объект, соответствующий максимальному знанию, подлежит за­мене менее идеализированными понятиями. Но когда это происходит? Наступление такого момента зависит от физических механизмов необратимости, к которым мы еще вернемся в гл. 9. Но предварительно нам необ­ходимо резюмировать некоторые другие особенности возрождения современной науки.

294

6. Неравновесная Вселенна

Две научные революции, описанные в этой главе, начались с попыток включить в общую схему классиче­ской механики универсальные постоянные с и h. Это по­влекло за собой далеко идущие последствия, частично описанные выше. Вместе с том нельзя не отметить, что другие аспекты теории относительности и квантовой ме­ханики свидетельствуют об их принадлежности к миро­воззрению, лежащему в основе ньютоновской механики. В особенности это относится к роли и значению времени. Коль скоро в квантовой механике волновая функ­ция известна в нулевой момент времени, ее значение ? (t) определено в любой момент времени t, как в прошлом, так и в будущем. Аналогичным образом в теории относительности статический, геометрический характер времени часто подчеркивается использовани­ем четырехмерных обозначений (трех пространственных измерений и одного временного). Как точно заметил Минковский в 1908 г., «отныне пространство само по себе и время само по себе должны обратиться в фик­ции и лишь некоторый вид соединения обоих должен еще сохранить самостоятельность»13.

Но за последние пятьдесят лет ситуация резко из­менилась. Квантовая теория стала основным средством при рассмотрении элементарных частиц и их превраще­ний. Описание фантастического многообразия элемен­тарных частиц, обнаруженных за последние годы, уве­ло бы нас далеко в сторону от нашей основной темы.

Напомним лишь, что, опираясь на квантовую меха­нику и теорию относительности, Дирак предсказал су­ществование античастиц: каждой частице с массой m и зарядом е соответствует античастица с массой m и зарядом противоположного знака. Предвидение Дирака подтвердилось: к настоящему времени на ускорителях высоких энергий получены позитроны (античастицы электронов), антипротоны. Антиматерия стала обычным предметом исследования в физике элементарных час­тиц. При столкновении частицы и античастицы анни­гилируют с выделением фотонов — безмассовых частиц света. Уравнения квантовой теории симметричны отно­сительно замены частицы — античастицы или, точнее, относительно более слабого требования, известного под названием СРТ-симметрии. Несмотря на СРТ-симмет-

295

рию, между частицами и античастицами в окружающем нас мире существует замечательная дисимметрия. Мы состоим из частиц (электронов, протонов). Что же ка­сается античастиц, то они остаются своего рода лабора­торными «раритетами». Если бы частицы и античасти­цы сосуществовали в равных количествах, то все веще­ство аннигилировало бы. Имеются веские основания полагать, что в нашей Галактике антиматерия не су­ществует, но не исключено, что она существует в дру­гих галактиках. Можно представить себе, что во Все­ленной действует некий механизм, разделяющий части­цы и античастицы и «прячущий» последние где-то да­леко от нас. Однако более вероятно, что мы живем в несимметричной Вселенной, в которой материя преоб­ладает над антиматерией.

Как такое возможно? Модель, объясняющая наблю­даемую ситуацию, была предложена А. Д. Сахаровым в 1966 г.14 В настоящее время проблема отсутствия симметрии в распределении материи и антиматерии уси­ленно разрабатывается. Существенным элементом со­временного подхода является утверждение о том, что в момент образования материи Вселенная должна была находиться в неравновесных условиях, поскольку в со­стоянии равновесия из закона действия масс, о котором шла речь в гл. 5, следовало бы количественное равен­ство материи и антиматерии.

В этой связи мы хотели бы подчеркнуть, что нерав­новесность обретает ныне новое, космологическое изме­рение. Без неравновесности и связанных с ней необра­тимых процессов Вселенная имела бы совершенно иную структуру. Материя нигде не встречалась бы в замет­ных количествах. Повсюду наблюдались бы лишь флуктуации, приводящие к локальным избыткам то материи, то антиматерии.

Из механистической теории, модифицированной с учетом существования универсальной постоянной h, квантовая теория превратилась в теорию взаимопре­вращений элементарных частиц. В ходе предпринятых в последнее время попыток построить единую теорию элементарных частиц высказывалась гипотеза о том, что все элементарные частицы материи, включая про­тон, нестабильны (правда, время жизни протона дости­гает коллосальной величины — 1030 лет). Механика, наука о движении, вместо того чтобы соответствовать

296

фундаментальному уровню описания, низводится до ро­ли приближения, годного лишь вследствие огромного времени жизни таких элементарных частиц, как протоны.

Аналогичным трансформациям подверглась и тео­рия относительности. Как мы уже упоминали, теория относительности начинала как геометрическая теория, сильно акцентировавшая свой безвременной характер. Ныне теория относительности является основным инст­рументом исследования тепловой истории Вселенной, позволяющим раскрыть те механизмы, которые привели к наблюдаемой ныне структуре Вселенной. Тем самым обрела новое звучание проблема времени, необратимо­сти. Из области инженерии, прикладной химии, где она была сформулирована впервые, проблема необратимо­сти распространилась на всю физику — от теории эле­ментарных частиц до космологии.

Если к оценке квантовой механики подходить, имея в виду главную тему нашей книги, то основной заслу­гой ее следует считать введение вероятности в физику микромира. Вероятность, о которой идет речь, не следу­ет путать со стохастическими процессами, описываю­щими химические реакции (о них мы рассказали в гл. 5). В квантовой механике волновая функция эво­люционирует во времени детерминистическим образом, за исключением тех моментов, когда над квантовой системой производится измерение.

Мы видим, что за пятьдесят лет, прошедших со вре­мени создания квантовой механики, исследования не­равновесных процессов показали, что флуктуация, сто­хастические элементы важны даже в микроскопическом масштабе. На страницах нашей книги мы уже неодно­кратно говорили о том, что продолжающееся ныне кон­цептуальное перевооружение физики ведет от детерми­нистических обратимых процессов к процессам стоха­стическим и необратимым. Мы считаем, что в этом процессе квантовая механика занимает своего рода про­межуточную позицию: она вводит вероятность, но не необратимость. Мы ожидаем (и в гл. 9 будут приведе­ны некоторые основания для этого), что следующим шагом будет введение фундаментальной необратимости на микроскопическом уровне. В отличие от попыток восстановить классическую ортодоксальность с по­мощью скрытых переменных мы считаем, что необходи­мо еще дальше отойти от детерминистических описаний и принять статистическое, стохастическое описание.

297

Глава 8. СТОЛКНОВЕНИЕ ТЕОРИЙ

1. Вероятность и необратимость

Мы увидим, что почти всюду фи­зик очистил свою науку от использо­вания одностороннего времени, как бы сознавая, что эта идея привносит антропоморфный элемент, чуждый идеалам физики. Тем не менее в не­скольких важных случаях односто­роннее время и односторонняя при­чинность возникали, словно по вол­шебству, но, как будет показано, всякий раз в поддержку какой-ни­будь ложной теории.

Г. Н. Льюис1

Закон монотонного возрастания энтропии — второе начало термоди­намики — занимает, как мне кажется, высшее положение среди законов при­роды. Если кто-нибудь заметит вам, что ваша любимая теория Вселенной не согласуется с уравнениями Мак­свелла, то тем хуже для уравнений Максвелла. Если окажется, что ваша теория противоречит наблюдениям,— ну что же, и экспериментаторам слу­чается ошибаться. Но если окажется, что ваша теория противоречит вто­рому началу термодинамики, то у вас не останется ни малейшей надежды: ваша теория обречена на бесславный конец.

А. С. Эддингтон2

Предложенная Клаузиусом формулировка второго начала термодинамики сделала очевидным конфликт между термодинамикой и динамикой. Вряд ли найдется в физике другой такой вопрос, который бы обсуждался чаще и активнее, чем соотношение между термодина­микой и динамикой. Даже теперь, через сто пятьдесят лет после Клаузиуса, этот вопрос продолжает вызывать сильные эмоции. Никто не остается нейтральным в кон-

298

фликте, затрагивающем самый смысл реальности и времени. Следует ли нам отказаться от динамики, ма­тери современного естествознания, в пользу какого-нибудь варианта термодинамики? «Энергетисты», пользовавшиеся большим влиянием к конце XIX в., считали отказ oт динамики необходимым. Нельзя ли как-нибудь «спасти» динамику, сохранить второе нача­ло и вместе с тем не нарушить величественное здание, воздвигнутое Ньютоном и его последователями? Какую роль может играть энтропия в мире, описываемом ди­намикой?

Мы уже упоминали об ответе на этот вопрос, кото­рый был дан Больцманом. Знаменитое соотношение Больцмана S KlnP связывает энтропию и вероят­ность: энтропия возрастает потому, что возрастает ве­роятность. Сразу же подчеркнем, что в этом плане вто­рое начало имело бы огромное практическое значение, но не было бы столь фундаментальным. В своей пре­восходной книге «Этот правый, левый мир» Мартин Гарднер пишет: «Некоторые явления идут в одну сторо­ну не потому, что не могут идти в другую, а потому, что их протекание в обратом направлении весьма малове­роятно»3. Усовершенствуя наши возможности измерять все менее и менее вероятные события, мы могли бы достичь такого положения, когда второе начало играло бы сколь угодно малую роль. Такой точки зрения при­держиваются некоторые современные физики. Но Макс Планк считал иначе:

«Нелепо было бы предполагать, что справедливость второго начала каким бы ни было образом зависит от большего или меньшего совершенства физиков и хими­ков в наблюдательном или экспериментальном искусст­ве. Содержанию второго начала нет дела до экспери­ментирования, оно гласит in nuce (в самом главном): «В природе существует величина, которая при всех из­менениях, происходящих в природе, изменяется в од­ном и том же направлении». Выраженная в таком об­щем виде, эта теорема или верна, или не верна; но она остается тем, что она есть, независимо от того, сущест­вуют ли на Земле мыслящие и измеряющие существа и если они существуют, то умеют ли они контролировать подробности физических или химических процессов на один, два или сто десятичных знаков точнее, чем в на­стоящее время. Пределы для этого начала, если только

299

они действительно существуют, необходимо должны на­ходиться в той же области, в которой находится и его содержание, — в наблюдаемой природе, а не в наблю­дающих людях. Обстоятельства нисколько не изме­няются от того, что для вывода начала мы пользуемс

Рис. 23. Модель урн Эренфестов. N шаров распределены между двумя урнами А и В. Через равные промежутки времени (которые можно принять за единицу) из урны, выбираемой наугад, извлекает­ся шар и кладется в другую урну. В момент времени п в урне А на­ходится k шаров, а в урне В остальные N—k шаров.

человеческим опытом; для нас это вообще единствен­ный путь для исследования законов природы»4.

Взгляды Планка не получили особого распростра­нения среди его современников. Как уже отмечалось, большинство физиков склонны были считать второе на­чало следствием приближенного описания, вторжения субъективных взглядов в точный мир физики. Эту точ­ку зрения отражает, например, знаменитое высказыва­ние Борна: «Необратимость есть результат вхождения элемента нашего незнания в основные законы физики»5.

В настоящей главе мы намереваемся осветить неко-

300

торые основные этапы в развитии интерпретации вто­рого начала. Прежде всего необходимо понять, почему эта проблема оказалась столь трудной. В гл. 9 мы из­ложим новый подход, из которого, как нам хотелось бы надеяться, читателю станут ясны и принципиальная новизна, и объективное значение второго начала. Вы­вод, к которому мы придем, совпадает с точкой зре­ния Планка. Мы покажем, что второе начало, отнюдь

Рис. 24. Приближение к равновесию (k=N/2) в модели урн Эренфестов (ход кривой изображен схематически).

не разрушая величественное здание динамики, допол­няет его существенно новым элементом.

Прежде всего необходимо пояснить установленную Больцманом связь между вероятностью и энтропией. Воспользуемся для этого моделью урн, предложенной П. и Т. Эренфестами6. Рассмотрим N предметов (на­пример, шаров), распределенных между двумя контей­нерами (урнами) А и В. Предположим, что через оди­наковые промежутки времени (например, через секун­ду) мы извлекаем наугад шар либо из урны А, либо из урны В и перекладываем его в другую урну. Пусть че­рез п шагов в урне А находится k шаров, а в урне В — остальные N—k шаров. Тогда на (n+1)-ом шаге в ур­не A может оказаться либо k—1, либо k+1 шаров и вероятность перехода равна k/N для k®k—1 и 1—k/N для k®k+1. Предположим, что мы продолжаем из­влекать шары наугад из урн и перекладывать их в дру­гую урну. Мы ожидаем, что в результате перекладыва­ния шаров установится наиболее вероятное их распре­деление по урнам в смысле Больцмана. Если число ша-

301

ров N достаточно велико, то шары с наибольшей ве­роятностью распределятся между урнами А и В поров­ну: в каждой урне по N/2 шаров. В этом нетрудно убе­диться, проделав соответствующие вычисления или вы­полнив экспериментальную проверку.

Модель Эренфестов — простой пример марковского процесса (или цепи Маркова), названного так в честь выдающегося русского математика академика А. А. Мар-

Рис. 25. Временная эволюция H-функции (определенной в тек­сте), соответствующая модели Эренфестов. H монотонно убывает и при t®? стремится к нулю.

кова, одним из первых исследовавшего такие процессы (Пуанкаре был вторым). Кратко отличительную осо­бенность марковских процессов можно сформулировать следующим образом: вероятности переходов однознач­но определены и не зависят от предыстории системы. Цепи Маркова обладают замечательным свойством: их можно описать с помощью энтропии. Пусть P(k) — вероятность найти k шаров в урне A. Вероятности Р(К) можно сопоставить H-функцию, свойства которой в точ­ности совпадают со свойствами энтропии, рассмотрен­ной нами в гл. 4. На рис. 25 показано, как H-функция изменяется во времени. Мы видим, что она изменяется монотонно, как и энтропия изолированной системы.

302

Правда, H-функция убывает, а энтропия S возрастает, но так происходит «по определению»: H играет роль — S.

Математический смысл H-функции заслуживает то­го, чтобы рассмотреть его более подробно: H-функция служит мерой отклонения вероятностей в данный мо­мент времени от вероятностей в равновесном состоянии (когда число шаров в каждой урне равно N/2). Рас­суждения, используемые в модели урн Эренфестов, до­пускают обобщение. Рассмотрим разбиение квадрата, т. е. разделим квадрат на некоторое число непересе­кающихся областей. Нас будет интересовать распреде­ление частиц по квадрату. Пусть Р(k, t) — вероятность найти частицу в области k (в момент времени t), а Рравн(k) — вероятность найти частицу в области k в равновесных условиях. Предполагается, что, как и в модели урн, вероятности переходов существуют и одно­значно определены. По определению, H-функция зада­ется выражением

Заметим, что в правую часть входит отношение P(k,t)/Pравн(k). Предположим, что мы разделили квад­рат на восемь непересекающихся клеток и Рравн(k)=1/8. Пусть в момент времени t все частицы находят­ся в первой клетке. Тогда P(1,t)=1, a во всех осталь­ных клетках вероятности P(k,t) равны нулю. Следова­тельно, H=ln(1/(1/8))=ln8. Со временем частицы распределяются по клеткам равномерно, и P(k,t)=Pравн(k)=1/8. H-функция при этом обращается в нуль. Можно показать, что H-функция убывает моно­тонно, как это изображено на рис. 25. (Доказательство этого утверждения приводится во всех учебниках по теории стохастических процессов.) Именно поэтому H-функция играет роль «негэнтропии» — S. Монотон­ное убывание H-функции имеет очень простой смысл: оно отражает и служит мерой прогрессирующего вы­равнивания неоднородностей в системе. Начальная ин­формация утрачивается, и система эволюционирует от «порядка» к «беспорядку».

Заметим, что марковский процесс включает в себя флуктуации. Это отчетливо видно на рис. 24. Подож­дав достаточно долго, мы могли бы вернуться в исход-

303

ное состояние. Следует, однако, подчеркнуть, что речь идет о средних: монотонно убывающая Hм-функция может быть выражена через распределения вероятно­стей, а не через отдельные события. Именно распреде­ление вероятностей эволюционирует необратимо (в мо­дели Эренфестов функция распределения равномерно стремится к биномиальному распределению). Сле­довательно, на уровне функций распределения цепи Маркова приводят к однонаправленности во време­ни.

Стрела времени характеризует различие между це­пями Маркова и временной эволюцией в квантовой ме­ханике, в которой волновая функция (самым непосред­ственным образом связанная с вероятностями) эволю­ционирует во времени обратимо. Это также один из примеров тесной взаимосвязи между стохастическими процессами, например цепями Маркова, и необрати­мостью. Однако возрастание энтропии (или убывание H-функции) основывается не на стреле времени, зало­женной в законах природы, а на нашем решении вос­пользоваться знанием, которым мы располагаем в на­стоящем, для предсказания поведения в будущем (но не в прошлом). Вот что говорит об этом в присущей ему лапидарной манере Гиббс:

«Но хотя по отношению к математическим построе­ниям различие между предшествующими и последую­щими событиями и может являться несущественным, по отношению к событиям реального мира дело обстоит совершенно иначе. В тех случаях, когда мы использу­ем ансамбли для вычисления вероятностей событий, происходящих в реальном мире, нельзя забывать о том, что если вероятности последующих событий довольно часто можно определить, зная вероятности предшеству­ющих, то лишь в весьма редких случаях удается определить вероятности предшествующих событий, зная ве­роятности последующих, ибо лишь чрезвычайно редко можно обоснованно исключить из рассмотрения апри­орную вероятность предшествующих событий»7.

Асимметрия между прошлым и будущим — важный вопрос, бывший и продолжающий оставаться предме­том оживленного обсуждения8. Теория вероятностей ориентирована во времени. Предсказание будущего от­лично от восстановления хода событий задним числом. Если бы этим отличием все и ограничилось, то нам не

304

оставалось бы ничего другого, как принять субъектив­ную интерпретацию необратимости, так как различие между прошлым и будущим оказалось бы зависимым только от нас. Иначе говоря, при субъективной интер­претации необратимости (к тому же подкрепляемой сомнительной аналогией с теорией информации) «от­ветственность» за асимметрию во времени, характери­зующую развитие системы, возлагается на наблюдате­ля. А так как наблюдатель не может «одним взглядом» определить положения и скорости всех частиц, образу­ющих сложную систему, ему не известно мгновенное состояние системы, содержащее в себе ее прошлое и бу­дущее; он не в состоянии постичь обратимый закон, ко­торый позволил бы предсказать развитие системы от одного момента времени к следующему. Наблюдатель не может также производить над системой такие мани­пуляции, какие производил максвелловский демон, спо­собный разделять быстро и медленно движущиеся ча­стицы и вынуждать систему к антитермодинамической эволюции от менее к более неоднородному распределе­нию температуры9.

Термодинамика по-прежнему остается наукой о сложных системах, но с указанной точки зрения един­ственной специфической особенностью сложных систем является то, что наше знание о них ограниченно и не­определенность со временем возрастает. Вместо того чтобы распознать в необратимости связующее звено между природой и наблюдателем, ученый вынужден признать, что природа лишь отражает его собственное незнание. Природа безответна. Необратимость, отнюдь не способствуя укреплению наших позиций в физиче­ском мире, представляет собой не более чем отзвук че­ловеческой деятельности и ее пределов.

Против подобной точки зрения сразу же можно воз­разить. Приведенные выше интерпретации исходят из того, что термодинамика должна быть столь же уни­версальной, как и наше незнание. Но тогда должны существовать только необратимые процессы. Именно это и является камнем преткновения всех универсаль­ных интерпретаций энтропии, уделяющих основное вни­мание нашему незнанию начальных (или граничных) условий. Необратимость — не универсальное свойство. Чтобы установить связь между динамикой и термоди­намикой, необходим физический критерий, который по-

305

зволил бы нам различать обратимые и необратимые процессы.

К этому вопросу мы вернемся в гл. 9. А пока обра­тимся снова к истории науки и к пионерским работам Больцмана.

2. Больцмановский прорыв

Свои основные результаты Больцман получил в 1872 г., за тридцать лет до того, как были открыты це­пи Маркова. Больцман намеревался дать «механиче­скую» интерпретацию энтропии. Иначе говоря, если в цепях Маркова вероятности перехода заданы извне (как в модели Эренфестов), их в действительности не­обходимо связать с динамическим поведением системы. Эта проблема настолько захватила Больцмана, что он посвятил ей большую часть своей научной жизни. В его «Статьях и речах» есть такие строки:

«Если вы меня спросите относительно моего глу­бочайшего убеждения, назовут ли нынешний век же­лезным веком или веком пара и электричества, я от­вечу не задумываясь, что наш век будет называться веком... Дарвина»10.

Идея эволюции неотразимо влекла к себе Больц­мана. Его мечтой было стать Дарвином эволюции ма­терии.

Первый шаг на пути к механистической интерпрета­ции энтропии состоял во введении в физическое описа­ние некогда отброшенного представления о столкнове­нии атомов и молекул и тем самым в создании базы для статистического описания. Этот шаг был сделан Клаузиусом и Максвеллом. Так как столкновения — явления дискретные, их можно сосчитать и оценить среднюю частоту. Мы можем также классифицировать столкновения, например отнести к одному классу столк­новения, в результате которых рождается частица с заданной скоростью v, а к другому — столкновения, в результате которых частица со скоростью v исчезает, превращаясь в частицы с другими скоростями (т. е. разделить столкновения на прямые и обратные)11.

Максвелла интересовало, можно ли указать такое состояние газа, в котором столкновения, непрестанно изменяющие скорости молекул, не сказываются более на эволюции распределения скоростей, т. е. на среднем

306

числе молекул, движущихся с любой из скоростей. При каком распределении скоростей последствия различных столкновений в целом по ансамблю взаимно компенси­руются?

Максвелл показал, что такое особое состояние (со­стояние термодинамического равновесия) наступает, когда распределение скоростей принимает хорошо из­вестную форму колоколообразной, или гауссовой, кри­вой — той самой, которую основатель «социальной фи­зики» Кетле считал подлинным выражением случайности. Теория Максвелла позволяет весьма просто интер­претировать основные законы поведения газов. Повы­шение температуры соответствует увеличению средней скорости молекул и тем самым энергии, связанной с их движением. Эксперименты с высокой точностью под­твердили распределение Максвелла. Оно и поныне слу­жит основой решения многочисленных задач в физиче­ской химии (например, при вычислении числа столкно­вений в реакционной смеси).

Больцман, однако, вознамерился пойти дальше. Ему хотелось описывать не только состояние равновесия, но и эволюцию к равновесию, т. е. эволюцию к максвелловскому распределению. Он решил выявить молеку­лярный механизм, соответствующий возрастанию энт­ропии, механизм, вынуждающий систему стремиться к переходу из произвольного распределения скоростей к равновесному.

Характерно, что Больцман подошел к решению про­блемы физической эволюции не на уровне индивидуаль­ных траекторий, а на уровне ансамбля молекул. Ру­ководствуясь интуитивными соображениями, Больцман избрал подход, адекватный замыслу повторить в физике то, что Дарвин свершил в биологии, убедительно до­казав: движущая сила биологической эволюции — есте­ственный отбор — может быть определена не для от­дельной особи, а лишь для популяции. Следовательно, естественный отбор — понятие статистическое.

Полученный Больцманом результат допускает срав­нительно простое описание. Эволюция функции распре­деления f(v,t) скоростей v в некоторой области прост­ранства в момент времени t представима в виде суммы двух эффектов: число частиц, имеющих в момент вре­мени t скорость v, изменяется в результате как свобод­ного движения частиц, так и столкновений между ни-

307

ми. Изменение числа частиц вследствие свободного движения нетрудно вычислить с помощью классической динамики. Оригинальность метода Больцмана связана с оценкой второго эффекта: изменения числа частиц за счет столкновений. Чтобы избежать трудностей, неиз­бежно возникающих при прослеживании движения (не только свободного, но и при взаимодействии) по траек­ториям, Больцман воспользовался понятиями, аналогич­ными тем, которые были описаны в гл. 5 (при рассмот­рении химических реакций), и занялся вычислением среднего числа столкновений, приводящих к рождению или уничтожению молекулы со скоростью v.

Здесь снова мы имеем два процесса, действие кото­рых противоположно: прямые и обратные столкновения. В результате прямого столкновения молекул со ско­ростями v' и v" возникает («рождается») молекула со скоростью v. В результате обратного столкновения мо­лекулы со скоростью v с молекулой со скоростью v'" скорость первой изменяется — молекула со скоростью v исчезает («уничтожается»). Как и в случае химиче­ских реакций (см. гл. 5, разд. 1), частота столкновений считается пропорциональной произведению числа моле­кул, участвующих в столкновении. (Разумеется, исто­рически метод Больцмана (1872) предшествовал мето­ду химической кинетики.)

Результаты, полученные Больцманом, совершенно аналогичны результатам теории цепей Маркова. Мы снова вводим функцию HHH. На этот раз она относится к распределению скоростей f. Она представима в виде H= o flnfdv. Как и в предыдущем случае, H-функция может только убывать со временем до тех пор, пока не будет достигнуто равновесие и распределение скорос­тей не перейдет в распределение Максвелла.

В последние годы многочисленные проверки моно­тонного убывания H-функции были проведены с по­мощью моделирования на ЭВМ. Все они подтвердили предсказание Больцмана. И поныне кинетическое урав­нение Больцмана играет важную роль в физике газов. Оно позволяет вычислять коэффициенты переноса (на­пример, коэффициенты теплопроводности и диффузии) в хорошем соответствии с экспериментальными данны­ми.

Но особенно велико достижение Больцмана с кон­цептуальной точки зрения: различие между обратимы-

308

ми и необратимыми процессами, лежащее, как мы ви­дели, в основе второго начала термодинамики, Больц­ман низвел с макроскопического на микроскопический уровень. Изменение распределения скоростей из-за сво­бодного движения молекул соответствует обратимой ча­сти, а вклад, вносимый в изменение распределения столкновениями, — необратимой части. Именно в этом и был, с точки зрения Больцмана, ключ к микроскопи­ческой интерпретации энтропии. Принцип молекулярной эволюции сформулирован! Легко понять, что это от­крытие обладало неотразимой привлекательностью для физиков, разделявших идеи Больцмана, в том числе Планка, Эйнштейна и Шредингера12.

Больцмановский прорыв стал решающим этапом в формировании нового научного направления — физики процессов. Временную эволюцию в уравнении Больц­мана больше не определяет гамильтониан, зависящий от типа сил. В больцмановском подходе движение по­рождают функции, связанные с процессом, например сечение рассеяния. Можно ли считать, что проблема необратимости решена и что теории Больцмана уда­лось свести энтропию к динамике? Ответ однозначен: нет, желанная цель не достигнута. Впрочем, вопрос этот столь важен, что заслуживает более подробного рассмотрения.

3. Критика больцмановской интерпретации

Возражения против теории Больцмана появились сразу же после выхода его основной работы в 1872 г. Действительно ли Больцману удалось «вывести» необ­ратимость из динамики? Каким образом обратимые за­коны движения по траекториям могут порождать не­обратимую эволюцию? Не противоречит ли кинетиче­ское уравнение Больцмана динамике? Нетрудно видеть, что симметрия уравнения Больцмана не согласуется с симметрией классической механики.

Мы уже видели, что в классической динамике обра­щение скорости (v®—v) приводит к такому же ре­зультату, как и обращение времени (t®—t). Это — основная симметрия классической динамики, и можно было бы надеяться, что кинетическое уравнение Больцмана, описывающее, как изменяется во времени функ­ция распределения, обладает такой же симметрией. Но

309

в действительности все обстоит иначе: вычисленный Больцманом столкновительный член инвариантен отно­сительно обращения скорости. Эта несколько неожи­данная инвариантность имеет простой физический смысл: в больцмановской картине нет никакого раз­личия между столкновением, обращенным в будущее, и столкновением, обращенным в прошлое. Именно на этой идее основано возражение Пуанкаре против вывода уравнения Больцмана, предложенного самим Больцма­ном. Правильные вычисления не могут приводить к за­ключениям, противоречащим исходным допущени­ям13, 14. Но, как мы видели, симметрия кинетического уравнения, выведенного Больцманом для функции рас­пределения, противоречит симметрии классической ди­намики. Следовательно, заключает Пуанкаре, Больцман не сумел «вывести» энтропию из динамики. Где-то в своих рассуждениях он ввел нечто новое, чуждое ди­намике. Следовательно, выведенное Больцманом урав­нение в лучшем случае может рассматриваться лишь как феноменологическая модель, полезная, но не име­ющая прямого отношения к динамике. Таково было также возражение Цермело (1896), выдвинутое против теории Больцмана.

С другой стороны, возражение Лошмидта (1876) позволило установить границы применимости кинетиче­ской модели Больцмана. Лошмидт заметил, что модель Больцмана перестает выполняться после обращения скоростей, соответствующего преобразованию v®—v.

Поясним суть возражения Лошмидта с помощью мысленного эксперимента. Предположим, что газ на­ходится сначала в неравновесном состоянии и эволю­ционирует до момента времени t0. В момент времени t0 обратим все скорости. Тогда система вернется в началь­ное состояние. Следовательно, больцмановская энтро­пия при t=0 и t=2t0 должна быть одинакова.

Число таких мысленных экспериментов легко мож­но было бы приумножить. Предположим, что при t=0 у нас имеется смесь водорода и кислорода. Через ка­кое-то время образуется вода. Если обратить все ско­рости, то смесь вернется в исходное состояние: вода ис­чезнет, останутся только водород и кислород.

Интересно, что в лаборатории или в численном мо­делировании обращение скоростей — вполне выполни­мая операция. Например, на рис. 26 и 27 H-функци

310

Больцмана вычислена для двухмерных твердых сфер (дисков). В начальный момент времени диски располагаются в узлах квадратной решетки с изотропным рас­пределением cкоростей. Результаты вычислений совпа­дают с предсказаниями Больцмана.

Рис. 26. Эволюция H со временем для N «твердых шаров» (численное моделирование): a) N=100, b) N=484, с) N=1225.

Если через пятьдесят или сто столкновений (в раз­реженном газе это соответствует 10-6с) обратить ско­рости, то получается новый ансамбль15. После обраще­ния скоростей H-функция Больцмана уже не убывает, а возрастает.

Аналогичная ситуация возникает при определенных условиях в реальных экспериментах со спиновым эхом и эхом в плазме: на ограниченных интервалах времени наблюдается «антитермодинамическое», в смысле Больцмана, поведение системы.

Важно отметить, что эксперимент по обращению скоростей тем труднее, чем позже происходит обраще­ние скоростей (т. е. чем больше время t0).

Восстановить свое прошлое газ может лишь в том случае, если он «помнит» все, что с ним произошло в интервале времени от t=0 до t=t0. Для этого необхо­димо какое-то «хранилище» информации. В роли тако-

311

го хранилища, или памяти, выступают корреляции меж­ду частицами. К вопросу о корреляциях мы вернемся в гл. 9. Пока же заметим, что именно это соотношение между корреляциями и столкновениями было недоста­ющим звеном в рассуждениях Больцмана. Когда Лошмидт в полемике с Больцманом указал на это обстоя­

Рис. 27. Эволюция H при обращении скоростей после 50 и 100 соударений. Численное моделирование для 100 «твердых шаров».

тельство, Больцман вынужден был признать правоту своего оппонента: обратные столкновения «ликвидиру­ют последствия» прямых столкновений и система долж­на возвращаться в начальное состояние. Следователь­но, H-функция должна возрастать от конечного значе­ния к начальному. Таким образом, обращение скоро­стей требует проведения различия между ситуациями, к которым рассуждения Больцмана применимы, и си­туациями, в которых те же рассуждения неверны.

После того как эта проблема была поставлена (1894), выяснить природу ограничения оказалось. совсем не трудно16,17. Применимость статистического подхода Больцмана зависит от предположения о том, что перед столкновением молекулы ведут себя незави-

312

симо друг от друга. Это предположение относительно начального состояния газа известно под названием ги­потезы молекулярного хаоса. Начальное состояние, воз­никающее в результате обращения скоростей, не удов­летворяет гипотезе молекулярного хаоса. Если систему заставить эволюционировать «вспять во времени», то создается новая ситуация, аномальная в том смысле, что некоторым молекулам, сколь бы далеко друг от друга они ни находились в момент обращения скорос­тей, предопределено встретиться в заранее установлен­ный момент времени и подвергнуться заранее установ­ленному преобразованию скоростей.

Обращение скоростей порождает высокоорганизо­ванную систему, и гипотеза молекулярного хаоса пере­стает выполняться. Различные столкновения, как бы под влиянием предустановленной гармонии, порождают поведение газа, которое внешне вполне «целенаправ­ленно».

Но это еще не все. Что означает переход от поряд­ка к хаосу? В предложенной Эренфестами модели урн ответ ясен: система эволюционирует до тех пор, пока распределение шаров не становится равномерным. В других случаях ситуация не столь проста. Мы можем воспользоваться численным моделированием и начать со случайного распределения взаимодействующих час­тиц. Со временем (на какое-то мгновение) может обра­зоваться правильная решетка. Происходит ли в этом случае переход от порядка к хаосу? Ответ на этот во­прос далеко не очевиден. Для того чтобы понять поря­док и хаос, нам необходимо прежде всего определить те объекты, к которым мы применяем эти понятия. Пе­реход от динамики к термодинамике, как показал Больцман, совершается особенно легко в разреженных газах. Но в плотных системах, где молекулы взаимо­действуют между собой, переход этот не столь очевиден.

Именно из-за трудностей, возникающих при рас­смотрении плотных систем с взаимодействующими час­тицами, яркая пионерская теория Больцмана осталась незавершенной.

4. Динамика и термодинамика — два различных мира

Мы уже упоминали о том, что траектории несовме­стимы с понятием необратимости. Но поведение траек­торий — отнюдь не единственный язык, на котором мы

313

можем сформулировать динамику. В качестве альтерна­тивы сошлемся на теорию ансамблей, развитую Гиббсом и Эйнштейном7,18 и представляющую особый ин­терес при изучении систем, состоящих из большого чис­ла молекул. Существенно новым элементом в теории ансамблей Гиббса—Эйнштейна явилась возможность сформулировать динамическую теорию независимо от точного задания каких бы то ни было начальных усло­вий.

В теории ансамблей физические системы рассматри­ваются в фазовом пространстве. Динамическое состоя­ние точечной частицы (материальной точки) определя­ется ее положением (вектором с тремя компонентами) и импульсом (тоже вектором с тремя компонентами). Такое состояние можно представить двумя точками (каждая из которых принадлежит «своему» трехмер­ному пространству) или одной точкой в шестимерном пространстве координат и импульсов. Это и есть фазо­вое пространство. Геометрическое представление дина­мических состояний одной точечной частицы обобщает­ся на случай произвольной системы п частиц. Для того чтобы задать состояние такой системы, необходимо ука­зать nr6 чисел, или точку в 6n-мерном фазовом про­странстве. Эволюции во времени системы п частиц бу­дет соответствовать траектория в фазовом простран­стве.

Мы уже говорили о том, что точные начальные ус­ловия макроскопической системы никогда не известны. Однако ничто не мешает нам представить систему ан­самблем точек, т. е. «облаком» точек, соответствующих различным динамическим состояниям, совместимым с той информацией о системе, которой мы располагаем. Каждая область фазового пространства может содер­жать бесконечно много представляющих точек. Их плотность служит мерой вероятности найти рассматри­ваемую систему в данной области. Вместо того чтобы рассматривать бесконечно много дискретных точек, удобнее ввести непрерывное распределение представля­ющих точек в фазовом пространстве. Пусть r(q1, ..., q3n, p1, ..., p3n) — плотность распределения представляющих точек в фазовом пространстве, где q1, ..., q3n — коорди­наты п точек, a p1, ..., p3n — импульсы тех же точек (каждая точка имеет три координаты и три импульса). Плотность r есть плотность вероятности найти динами-

314

ческую систему в окрестности точки q1, ..., q3n, p1, ..., p3n фазового пространства.

При таком подходе плотность r может показаться идеализацией, искусственной конструкцией, а траекто­рия точки в фазовом пространстве «непосредственно» соответствующей описанию «естественного» поведения системы. Но в действительности идеализацией являет­ся точка, а не плотность. Дело в том, что начальное состояние никогда не бывает известно с бесконечной степенью точности, позволяющей стянуть область в фа­зовом пространстве в отдельную точку. Мы можем лишь определить ансамбль траекторий, выходящих из ан­самбля представляющих точек, соответствующих тому, что нам известно относительно начального состояния системы. Функция плотности r отражает уровень на­ших знаний о системе: чем точнее знания, тем меньше область в фазовом пространстве, на которой плотность отлична от нуля, т. е. та область, где может находить­ся система. Если бы плотность была равномерно рас­пределена по всему фазовому пространству, то утверж­дать что-либо относительно состояния системы было бы невозможно. Она могла бы находиться в любом из состояний, совместимых с ее динамической структурой.

При таком подходе точка соответствует максимуму знания, которым мы можем располагать о системе. Та­кой максимум есть результат предельного перехода, все возрастающей точности нашего знания. Как мы уви­дим в гл. 9, фундаментальная проблема состоит в том, чтобы выяснить, какой предельный переход реально осуществим. Непрестанное повышение точности означа­ет, что от одной области в фазовом пространстве, где плотность r отлична от нуля, мы переходим к другой, меньшей, которая содержится в первой. Такое стягива­ние мы можем продолжать до тех пор, пока область, содержащая систему, не станет сколь угодно малой. Но при этом, как мы увидим в дальнейшем, необходимо соблюдать осторожность: «сколь угодно малая» не оз­начает «нулевая», и априори ниоткуда не следует, что наш предельный переход непременно приведет к непро­тиворечивому предсказанию отдельной однозначно оп­ределенной траектории.

Теория ансамблей Гиббса—Эйнштейна — естест­венное продолжение теории Больцмана. Функцию плот­ности r в фазовом пространстве можно рассматривать

315

как аналог функции распределения скоростей f, кото­рую использовал Больцман. Но по своему физическо­му содержанию PPP «богаче», чем f. Функция плотности r так же, как и f, определяет распределение скоростей, но, помимо этого, r содержит и другую информацию, в частности вероятность найти две частицы на опреде­ленном расстоянии друг от друга. В функцию плотно­сти PPP входит и все необходимое для определения кор­реляций между частицами, о которых шла речь в пре­дыдущем разделе. Более того, r содержит полную ин­формацию о всех статистических свойствах системы п тел.

Опишем теперь эволюцию функции плотности в фа­зовом пространстве. На первый взгляд это еще более дерзкая задача, чем та, которую поставил перед собой Больцман: описание временной эволюции функции рас­пределения скоростей. Но это не так. Канонические уравнения Гамильтона, о которых шла речь в гл. 2, по­зволяют нам получить точное эволюционное уравнение для r без дальнейших приближений. Это так называе­мое уравнение Лиувилля, к которому мы еще вернемся в гл. 9. Пока же отметим лишь одно важное следствие из гамильтоновой динамики: плотность r эволюциони­рует в фазовом пространстве как несжимаемая жид­кость (если представляющие точки в какой-то момент времени занимают в фазовом пространстве область объ­емом V, то объем области остается постоянным во вре­мени). Форма области может изменяться произвольно, но объем ее при всех деформациях сохраняется.

Таким образом, теория ансамблей Гиббса открыва­ет возможность строгого сочетания статистического под­хода (исследования «популяции», описываемой плот­ностью r) и законов динамики. Она допускает также более точное представление состояния термодинамиче­ского равновесия. Например, в случае изолированной системы ансамбль представляющих точек соответству­ет системам с одной и той же энергией Е. Плотность r отлична от нуля только на микроканонической поверх­ности в фазовом пространстве, отвечающей заданному значению энергии. Первоначально плотность r может быть распределена по микроканонической поверхности произвольно. В состоянии равновесия плотность r пе­рестает изменяться во времени и не должна зависеть от выбора начального состояния. Следовательно, при-

316

Рис. 28. Временнaя эволюция в фазовом пространстве «объема», содержащего представляющие точки системы: величина объема остается неизменной, а форма искажается. Положение в фазовом пространстве задается координатой q и импульсом р.

ближение к равновесному состоянию имеет простой смысл в терминах эволюции плотности r: функция рас­пределения r становится постоянной на всей микроканонической поверхности. Каждая точка такой поверх­ности с равной вероятностью может представлять си­стему. Это соответствует микроканоническому ансамб­лю.

Приближает ли теория ансамблей хоть сколько-ни­будь к решению проблемы необратимости? Теория Больцмана описывает термодинамическую энтропию с помощью функции распределения скоростей f. Для это­го Больцману пришлось ввести свою H-функцию. Как мы уже знаем, система эволюционирует во времени до тех пор, пока распределение скоростей не становится максвелловским, и на протяжении всей эволюции H функция монотонно убывает. Можно ли теперь в бо­лее общем плане принять за основу возрастания энтро­пии эволюцию распределения r в фазовом пространст­ве к микроканоническому ансамблю? Достаточно ли для этого вместо больцмановской функции H, выра­женной через f, взять гиббсовскую функцию HG, зави­сящую точно таким же образом от r? К сожалению, ответы на оба вопроса отрицательны. Если мы рассмот­рим уравнение Лиувилля, описывающее эволюцию плот­ности r в фазовом пространстве, и учтем сохранение объема «фазовой жидкости», о котором уже упомина-

317

лось, то вывод последует незамедлительно: функция HG постоянна и поэтому не может быть аналогом энт­ропии. По отношению к теории Больцмана последнее обстоятельство кажется не столько продвижением впе­ред, сколько шагом назад!

Несмотря на этот негативный аспект, вывод Гиббса остается весьма важным. Мы уже неоднократно отме­чали расплывчатость и. неоднозначность понятий поряд­ка и хаоса. Постоянство функции HG свидетельствует о том, что в рамках динамической теории не существу­ет никакого изменения порядка! «Информация», выра­жаемая функцией HG, остается постоянной. Сохранение информации можно понимать следующим образом: столкновения порождают корреляции. В результате столкновений скорости рандомизируются, становятся случайными, что позволяет нам описывать весь про­цесс как переход от порядка к хаосу. Вместе с тем по­явление корреляции в результате столкновений свиде­тельствует об обратном процессе: о переходе от хаоса к порядку! Теория Гиббса показывает, что оба процес­са — прямой и обратный — в точности компенсируют друг друга.

Итак, мы приходим к важному выводу: независимо от выбора представления (будь то движение по траек­ториям или теория ансамблей Гиббса—Эйнштейна) нам не удастся построить теорию необратимых процес­сов, которая выполнялась бы для любой системы, удов­летворяющей законам классической (или квантовой) механики. У нас нет даже способа говорить о переходе от порядка к хаосу! Как следует понимать эти отрица­тельные результаты? Любая ли теория необратимых процессов находится в неразрешимом конфликте с ме­ханикой (классической или квантовой)? Нередко высказывалось предложение включить космологические чле­ны, которые учитывали бы влияние расширяющейся Вселенной на уравнения движения и порождали бы стрелу времени. С подобной идеей трудно согласиться. С одной стороны, не вполне ясно, как вводить эти кос­мологические члены. С другой стороны, точные динами­ческие эксперименты, по-видимому, отвергают сущест­вование космологических членов, по крайней мере если говорить о земных масштабах, которые мы и рассмат­риваем в данном случае (достаточно вспомнить о пре­цизионных космических экспериментах, поставленных

с помощью искусственных спутников Земли и под­твердивших с высокой точностью уравнения Ньютона). Вместе с тем, как уже неоднократно подчеркивалось, мы живем в плюралистическом мире, в котором обра­тимые и необратимые процессы сосуществуют в одной и той же расширяющейся Вселенной.

Еще более радикальный вывод состоит в том, чтобы встать на точку зрения Эйнштейна и считать время как необратимость иллюзией, которая никогда не найдет се­бе места в объективном мире физики. К счастью, су­ществует другой выход, который мы подробно рас­смотрим в гл. 9. Необратимость, как мы неоднократно отмечали, не является универсальным свойством, а это означает, что не следует ожидать общего вывода необратимости из динамики.

Теория ансамблей Гиббса вводит лишь один допол­нительный, но очень важный элемент по сравнению с динамикой траекторий: наше незнание точных началь­ных условий. Маловероятно, чтобы одно лишь это не­знание приводило к необратимости.

Таким образом, не следует удивляться, что нас постигла неудача. Ведь мы так и не сформулировали те специфические особенности, которыми должна обладать динамическая система для того, чтобы приводить к не­обратимым процессам.

Почему так много ученых с готовностью приняли субъективную интерпретацию необратимости? Возмож­но, привлекательность субъективной интерпретации от­части объясняется тем, что, как мы знаем, необратимое возрастание энтропии сначала связывалось с несовер­шенством манипуляций, производимых над системой, и неполнотой нашего контроля над идеально обратимыми операциями.

Но субъективная интерпретация становится явно абсурдной, если мы оставляем в стороне малосущест­венные ассоциации с технологическими проблемами. Не следует забывать также о том историческом кон­тексте, в котором второе начало термодинамики об­рело интерпретацию стрелы времени. Если принять субъективную интерпретацию, то химическое сродство, теплопроводность, вязкость, т. е. все свойства, связан­ные с необратимым производством энтропии, окажутся зависимыми от наблюдателя. Кроме того, та роль, ко­торую играют в биологии явления организации, связан-

319

ные с необратимостью, не позволяет считать их просты­ми иллюзиями, обусловленными нашим незнанием. Раз­ве мы сами, живые существа, способные наблюдать и производить манипуляции, — не более чем фикции, вы­званные несовершенством наших органов чувств? Разве различие между жизнью и смертью — иллюзия?

Таким образом, последние достижения термодинами­ческой теории увеличили остроту конфликта между ди­намикой и термодинамикой. Попытки свести результа­ты термодинамики к аппроксимациям, обусловленным несовершенством нашего знания, оказались несостоя­тельными, когда была понята конструктивная роль энт­ропии и открыта возможность усиления флуктуаций. Наоборот, динамику трудно отвергнуть во имя необра­тимости: в движении идеального маятника нет никакой необратимости. Существование двух конфликтующих миров — мира траекторий и мира процессов — не вызы­вает сомнений. Мы не можем отрицать существование одного из них, утверждая существование другого.

В какой-то степени имеется определенная аналогия между этим конфликтом и тем, с которым связано за­рождение диалектического материализма. В гл. 5 и 6 мы описали природу, которую можно было бы назвать «исторической», т. е. способной к развитию и иннова­ции. Идея истории природы как неотъемлемой состав­ной части материализма принадлежит К. Марксу и бы­ла более подробно развита Ф. Энгельсом. Таким обра­зом, последние события в физике, в частности открытие конструктивной роли необратимости, поставили в есте­ственных науках вопрос, который давно задавали материалисты. Для них понимание природы означало пони­мание ее как способной порождать человека и челове­ческое общество.

Кроме того, в то время, когда Энгельс писал «Диа­лектику природы», физические науки отвергали меха­нистическое мировоззрение и склонялись ближе к идее исторического развития природы. Энгельс упоминает три фундаментальных открытия: энергии и законов, уп-равляющих ее качественными преобразованиями; клет­ки как основы всех органических существ и открытие Дарвином эволюции видов. Исходя из этих трех вели­ких открытий, Энгельс пришел к выводу, что механи­стическое мировоззрение мертво. Вместе с тем механи­цизм ставил перед диалектическим материализмом ряд

320

назад содержание далее



ПОИСК:




© FILOSOF.HISTORIC.RU 2001–2021
Все права на тексты книг принадлежат их авторам!

При копировании страниц проекта обязательно ставить ссылку:
'Электронная библиотека по философии - http://filosof.historic.ru'
Сайт создан при помощи Богданова В.В. (ТТИ ЮФУ в г.Таганроге)


Поможем с курсовой, контрольной, дипломной
1500+ квалифицированных специалистов готовы вам помочь