Рис. 41. Растягивающиеся (последовательность А) и сжимающиеся (последовательность С) слои пересекают различное число клеток («ящиков»), на которые разделено фазовое пространство «преобразования пекаря». Все «квадраты», принадлежащие данной последовательности, относятся к одному моменту времени t=2, но число клеток, на которые разделен каждый квадрат, зависит от начала отсчета времени системы ti.
между вероятностями исчезает, H -функция обращается в нуль. Чтобы сравнить его с «преобразованием пекаря» и двумя порождаемыми им цепями Маркова, необходимо уточнить, как выбираются соответствующие ячейки. Предположим, что мы рассматриваем систему в момент времени 2 (см. рис. 39) и что в исходном состоянии система находилась в момент времени ti. Согласно нашей динамической теории, клетки соответствуют всем возможным пересечениям разбиений от t=ti до t=2. На рис. 39 мы видим, что, когда ti отходит в прошлое,
348
ячейки становятся все более тонкими, поскольку нам приходится вводить все больше и больше вертикальных подразделений. Это отчетливо видно на рис. 41, где-в последовательности В мы получаем при движении сверху вниз ti-=1, 0, —1 и, наконец, ti=—2. Нетрудно видеть, что число ячеек возрастает при этом с 4 до 32.
Коль скоро мы располагаем ячейками, естественно сравнить неравновесное распределение с равновесным в каждой ячейке. В рассматриваемом нами примере неравновесное распределение есть либо растягивающийся слой (последовательность А), либо сжимающийся слой (последовательность С). Обратим внимание на то, что по мере сдвига ti в прошлое растягивающийся слой занимает все большее число ячеек: при ti=—1 он занимает 4 ячейки, при ti=—2 — уже 8 ячеек и т. д. В результате, воспользовавшись формулой из гл. 8, мы получаем конечный «ответ», даже если число ячеек неограниченно возрастает при ti®?.
Сжимающийся слой в отличие от растягивающегося при любых ti всегда локализован в 4 ячейках. Это приводит к тому, что H-функция для сжимающегося слоя обращается в бесконечность, когда ti уходит в прошлое. Таким образом, различие между динамической системой и цепью Маркова состоит в том, что в случае динамической системы необходимо рассматривать бесконечно много ячеек. Приготовить или наблюдать можно лишь такие меры или вероятности, которые в пределе при бесконечно большом числе ячеек дают конечную информацию или конечную H-функцию. Это исключает сжимающиеся слои18. По той же причине необходимо исключить и распределения, сосредоточенные в одной точке. Начальные условия, соответствующие одной точке в неустойчивой системе, соответствовали бы бесконечной информации. Следовательно, ни реализовать, ни наблюдать их невозможно. И в этом случае второе начало выступает в роли принципа отбора.
В классической схеме начальные условия были произвольными. Для неустойчивых систем произвол исключается. Каждое начальное условие обладает в случае неустойчивых систем определенным информационным содержанием, которое зависит от динамики системы (подобно тому как в «преобразовании пекаря» для вычисления информационного содержания мы прибегли к последовательному делению ячеек). Начальные усло-
349
вия и динамика перестают быть независимыми. Второе начало как принцип отбора представляется нам настолько важным, что мы хотели бы привести еще один пример, на этот раз связанный с динамикой корреляций.
7. Динамика корреляций
В гл. 8 мы кратко обсудили эксперимент с обращением скоростей. Возьмем разреженный газ и проследим за его эволюцией во времени. При t=t0 обратим скорости всех молекул газа. Газ вернется в начальное состоя
Рис. 42. Рассеяние частиц. Первоначально скорости всех частиц равны. После соударения равенство скоростей нарушается и рассеянные частицы коррелированы с рассеятелем (корреляции здесь и далее изображены волнистыми линиями).
ние. Мы уже обращали внимание на то, что для воспроизведения своего прошлого газу необходимо некое хранилище информации — своего рода «память». Такой памятью являются корреляции между частицами19.
Рассмотрим сначала облако частиц, движущихся к мишени (тяжелой неподвижной частице). Схематически ситуация изображена на рис. 42. В далеком прошлом корреляций между частицами не было. Рассеяние приводит к двум эффектам (см. гл. 8): оно «разбрасывает» частицы (делает распределение скоростей более симметричным) и, кроме того, порождает корреляции между рассеянными частицами и рассеивателем. Корреляции станут заметными, если обратить скорости (например, с помощью сферического зеркала). Эта ситуация изображена на рис. 43 (волнистыми линиями условно показаны корреляции). Таким образом, роль рас-
350
сеяния сводится к следующему. При прямом рассеянии распределение скоростей становится более симметричным и возникают корреляции между частицами. При обратном рассеянии распределение скоростей становится менее симметричным, а корреляции исчезают. Таким образом, учет корреляций приводит к основному различию между прямым и обратным рассеянием.
Аналогичные рассуждения применимы и к системе многих тел. Здесь также возможны ситуации двух ти-
Рис. 43. Влияние обращения скоростей после соударения: после нового «обращенного» соударения корреляции подавлены и скорости всех частиц равны.
пов. В одном случае (прямой процесс) некоррелированные частицы налетают, рассеиваются и порождают коррелированные частицы (рис. 44). В другом случае (обратный процесс) коррелированные частицы налетают, корреляции при столкновениях нарушаются и после-столкновении частицы уже не коррелированы (рис. 45).
Прямой и обратный процессы отличаются последовательностью столкновений и корреляций во времени. В первом случае имеют место корреляции послестолкновительиыс («постстолкновительные»). Имея в виду различие между пред- и послестолкновительными корреляциями, вернемся к эксперименту с обращением скоростей. Начнем при t=0 — с начального состояния, соответствующего корреляциям между частицами. В интервале времени от t=0 до t=t0 система эволюционирует «нормально»: в результате столкновений распределение скоростей приближается к распределению Максвелла. Кроме того, столкновения порождают послестолкновительные корреляции между частицами. При t=t0 происходит обращение скоростей и возникает качественно новая ситуация. Послестолкновительные корреляции ста-
351
новятся предстолкновительными. В интервале времени от t=t0 до t=2t0 эти предстолкновительные корреляции исчезают, распределение скоростей становится менее симметричным, и к моменту времени t=2t0 полностью
восстанавливается некоррелированное состояние. Таким образом, история системы делится на два этапа. На первом этапе столкновения трансформируются в корре-
Рис. 45. Разрушение предстолкновительных корреляций (волнистые линии) при столкновениях.
ляции, на втором этапе происходит обратное превращение корреляций в столкновения. Оба типа процессов — прямой и обратный — не противоречат законам динамики. Кроме того, как мы уже упоминали в гл. 8, полная «информация», описываемая динамикой, остается постоянной. Мы видели также, что в больцмановском описании эволюция от t=0 до t=t0 соответствует обычному убыванию H-функции, а в интервале от t=t0 до t=2t0 эволюция протекала бы аномально: H-функция возрастала бы, а энтропия убывала. Но это означало бы, что можно придумать эксперименты, как лабораторные, так и численные, в которых нарушалось бы второе начало! Необратимость на интервале [0, t0] компенсировалась бы «антинеобратимостью» на интервале [t0, 2t0 ].
352
Такое положение нельзя признать удовлетворительным. Все трудности устраняются, если перейти к новому «термодинамическому представлению», в рамках которого динамика, как в «преобразовании пекаря», становится вероятностным процессом, аналогичным цепи Маркова. Следует также учесть, что обращение — процесс не
Рис. 46. Временная эволюция H-функции в эксперименте с обращением скоростей. В момент времени t0 происходит обращение скоростей — H-функция претерпевает разрыв. В момент времени 2t0 система находится в таком же состоянии, как в момент времени 0, — H-функцця возвращается к своему начальному значению. При всех t, за исключением t=t0, H-функция убывает. Важно подчеркнуть, что при t=t0, H-функция принимает два различных значения.
«естественный». Для обращения скоростей к молекулам извне должна поступить «информация». Для того чтобы обратить скорости, необходимо существо, аналогичное демону Максвелла, а за демона Максвелла приходится «платить». Изобразим зависимость H-функции от времени (для какого-нибудь вероятностного процесса). Типичный график такой зависимости представлен на рис. 46. При нашем подходе (в отличие от больцмановского) эффект корреляций при переопределении H-функции сохраняется. Следовательно, в точке обращения скоростей t0 функция H должна претерпевать скачок,
353
поскольку мы внезапно создаем в этой точке аномальные предстолкновительные корреляции, которые должны нарушиться позднее. Скачок H-функции соответствует энтропии, или информационной цене, которую нам приходится платить.
Итак, мы получаем адекватное представление второго начала: в любой момент времени H-функция убывает (энтропия возрастает). Единственным исключением является точка t0: H-функция претерпевает в ней скачок в тот самый момент, когда система открыта. Лишь воздействуя на систему извне, можно «обратить» скорости.
Нельзя не отметить еще одно важное обстоятельство: при t=t0 новая H-функция принимает два различных значения, одно — для системы до обращения скоростей, другое — для системы после обращения скоростей. Энтропия системы до обращения и после обращения скоростей различна. Это напоминает ситуацию, происходящую при «преобразовании пекаря», когда сжимающийся и растягивающийся слои — скорости, переходящие друг в друга при обращении.
Предположим, что, прежде чем производить обращение скоростей, мы достаточно долго выжидаем. В этом случае послестолкновительные корреляции имели бы произвольный радиус и энтропийная цена за обращение скоростей была бы непомерно велика. А поскольку обращение скоростей стало бы нам «не по карману», его исключили бы. На физическом языке это означает, что второе начало запрещает устойчивые предстолкновительные корреляции на больших расстояниях.
Поразительна аналогия с макроскопическим описанием второго начала. Тепло и механическая энергия эквивалентны с точки зрения сохранения энергии (см. гл. 4 и 5), но отнюдь не второго начала. Кратко говоря, механическая энергия более «высокого сорта» (более когерентна), чем тепло, и всегда может быть превращена в тепло. Обратное неверно. Аналогичное различие существует на микроскопическом уровне между столкновениями и корреляциями. С точки зрения динамики столкновения и корреляции эквивалентны. Столкновения порождают корреляции, а корреляции могут разрушать последствия столкновений. Но между столкновениями и корреляциями имеется существенное различие. Мы можем управлять столкновениями и порождать
354
корреляции, но мы не в состоянии так управлять корреляциями, чтобы уничтожить последствия, вызванные столкновениями в системе. Этого существенного различия недостает в динамике, но его можно учесть в термодинамике. Следует заметить, что термодинамика нигде не вступает в конфликт с динамикой. Термодинамика вносит важный дополнительный элемент в наше понимание физического мира.
8. Энтропия как принцип отбора
Нельзя не удивляться тому, как сильно микроскопическая теория необратимых процессов напоминает традиционную макроскопическую теорию. И в той, и в другой теории энтропия имеет негативный аспект. В макроскопической теории энтропия запрещает некоторые процессы, например перетекание тепла от холодного предмета к теплому. В микроскопической теории энтропия запрещает некоторые классы начальных условий. Различие между тем, что запрещено, и тем, что разрешено, поддерживается во времени законами динамики. Из негативного аспекта возникает позитивный: существование энтропии вместе с ее вероятностной интерпретацией. Необратимость не возникает более, как чудо, на некотором макроскопическом уровне. Макроскопическая необратимость лишь делает зримой ориентированную во времени поляризованную природу того мира, в котором мы живем.
Как мы уже неоднократно подчеркивали, в природе существуют системы с обратимым поведением, допускающие полное описание в рамках законов классической или квантовой механики. Но большинство интересующих нас систем, в том числе все химические и, следовательно, все биологические системы, ориентировано во времени на макроскопическом уровне. Их отнюдь не иллюзорная однонаправленность во времени отражает нарушение временной симметрии на микроскопическом уровне. Необратимость существует либо на всех уровнях, либо не существует ни на одном уровне. Она не может возникнуть, словно чудо, при переходе с одного уровня на другой.
Мы также неоднократно отмечали, что необратимость является исходным пунктом других нарушений
355
симметрии. Например, по общему мнению, различие между частицами и античастицами могло возникнуть только в неравновесном мире. Это утверждение может быть распространено на многие другие ситуации. Вполне вероятно, что с необратимостью через отбор подходящей бифуркации связана и киральная симметрия. Многие из активно проводимых ныне исследований посвящены выяснению того, каким образом необратимость можно «вписать» в структуру материи.
Возможно, читатель обратил внимание на то, что при выводе микроскопической необратимости основной акцент мы делали на классической динамике. Но представления о корреляциях и различии между пред- и послестолкновительными корреляциями применимы не только к классическим, но и к квантовым системам. Исследование квантовых систем более сложно, чем исследование классических, что обусловлено различием между классической и квантовой механикой. Даже малые классические системы, например система, состоящая из нескольких твердых шаров, могут обладать внутренней необратимостью. Но для того чтобы достичь внутренней необратимости в квантовой механике, необходимы большие системы (со многими степенями свободы), которые встречаются в жидкости, газах или теории поля. Ясно, что исследование больших систем сопряжено со значительно большими математическими трудностями. Именно это не позволяет нам рассказать здесь о них подробнее. Тем не менее общая ситуация, с которой мы познакомились на примерах классических систем, сохраняется и в квантовой теории: необратимость там возникает вследствие ограниченной применимости понятия волновой функции, обусловленной той или иной разновидностью квантовой неустойчивости.
Применима в квантовой механике и идея о столкновениях и корреляциях. Как и в классической теории, второе начало запрещает существование в квантовой теории дальнодействующих предстолкновительных корреляций.
Переход к вероятностному процессу сопровождается введением новых сущностей. Второе начало как эволюция от порядка к хаосу может быть понято именно в терминах этих новых понятий. Второе начало приводит к новой концепции материи, к описанию которой мы сейчас переходим.
356
9. Активная матери
Связав энтропию с динамической системой, мы тем самым возвращаемся к концепции Больцмана: вероятность достигает максимума в состоянии равновесия. Структурные единицы, которые мы используем при описании термодинамической эволюции, в состоянии равновесия ведут себя хаотически. В отличие от этого в слабо неравновесных условиях возникают корреляции и когерентность.
Здесь мы подходим к одному из наших главных выводов: на всех уровнях, будь то уровень макроскопической физики, уровень флуктуаций или микроскопический уровень, источником порядка является неравновесность. Неравновесность есть то, что порождает «порядок из хаоса». Но, как мы уже упоминали, понятие порядка (или беспорядка) сложнее, чем можно было бы думать. Лишь в предельных случаях, например в разреженных газах, оно обретает простой смысл в соответствии с пионерскими трудами Больцмана.
Сравним еще раз динамическое описание физического мира с помощью сил и полей и термодинамическое описание. Как уже упоминалось, нетрудно составить программы численных экспериментов, в которых взаимодействующие частицы, первоначально распределенные случайным образом, в некоторый момент времени располагаются в узлах правильной решетки. Динамическая интерпретация этого явления гласит: возникновение порядка обусловлено игрой сил взаимодействия между частицами. Термодинамическая интерпретация утверждает иное: наблюдается общая тенденция к установлению хаоса (система изолирована), но хаоса, проявляющегося в совершенно других структурных единицах (в рассматриваемой модели это — коллективные моды, охватывающие большое число частиц). В этой связи, по-видимому, уместно напомнить неологизм, введенный нами в гл. 6 для обозначения новых структурных единиц, которые ведут себя некогерентно, несогласованно в состоянии равновесия системы; мы назвали их «гипнонами», или «сомнамбулами», поскольку в состоянии равновесия они движутся как во сне, «не замечая» друг друга. Каждый из гипнонов может обладать сколь угодно сложной структурой (достаточно вспомнить о том, насколько сложны молекулы ферментов), но в состоянии
357
равновесия их сложность обращена «внутрь» и никак не проявляется «снаружи». Например, внутри молекулы существует интенсивное электрическое поле, но в разреженном газе этим полем можно пренебречь: оно никак не сказывается на поведении других молекул.
Одним из главных предметов исследования в современной физике является проблема элементарных частиц. Известно, что элементарные частицы далеко не элементарны. По мере того как мы поднимаемся по шкале энергий, перед нами открываются все новые и новые «слои» в структуре элементарных частиц. Но что такое элементарная частица? Можно ли считать, например, что планета Земля — элементарная частица? Разумеется, нельзя, потому что часть энергии Земли приходится на ее взаимодействие с Солнцем, Луной и другими планетами. Понятие же элементарной частицы подразумевает «автономию», с трудом поддающуюся описанию с помощью обычных понятий. Взять, например, хотя бы электроны и фотоны. При рассмотрении их мы сталкиваемся с дилеммой: либо отдельные частицы не существуют (часть энергии «обобществлена» электронами и фотонами, т. е. приходится на коллективные моды системы электронов и протонов), либо, если исключить взаимодействие, существуют свободные (не взаимодействующие) электроны и фотоны. Даже если бы мы знали, как можно каждую частицу заэкранировать от других, исключение взаимодействия представляется слишком радикальной мерой. Электроны поглощают или испускают фотоны. Выход из создавшегося затруднения мог бы состоять в переходе к физике процессов. В этом случае структурные единицы (элементарные частицы) соответствовали бы определению гипнонов, так как в состоянии равновесия они ведут себя независимо. Мы надеемся, что наша гипотеза вскоре получит экспериментальное подтверждение. Особенно подкрепило бы ее обнаружение стрелы времени, выражающей глобальную эволюцию природы, непосредственно во взаимодействии атомов с фотонами (или другими нестабильными элементарными частицами).
Широко обсуждается в современной науке и проблема космической эволюции. Каким образом мир мог быть столь «упорядоченным» на первых этапах эволюции после большого взрыва? Тем не менее порядок необходим, если мы хотим понять космическую эволюцию
358
как постепенное движение от порядка к хаосу.
Для удовлетворительного решения проблемы нам необходимо знать, адекватны ли гипноны экстремальным условиям с колоссальными температурами и плотностью материи, характерными для ранних этапов развития Вселенной. Разумеется, одной термодинамике не под силу решить эти проблемы, как не в силах решить их и одна динамика, даже в высшей своей форме — теории поля. Именно поэтому объединение динамики и термодинамики открывает новые перспективы. Независимо от всяких прогнозов нельзя не удивляться разительным переменам, происшедшим в естествознании с тех пор, как было сформулировано второе начало (т. е. за какие-нибудь сто пятьдесят лет). Сначала физикам казалось, будто атомистические представления противоречат понятию энтропии. Больцман пытался спасти механистическое мировоззрение ценой сведения второго начала к вероятностному утверждению, весьма важному для практических приложений, но не имеющему фундаментального значения. Мы не знаем, каким будет окончательное решение, но современная ситуация коренным образом отличается от ситуации полуторавековой давности. Материя теперь не есть нечто данное. В современной теории она «конструируется» из более элементарного понятия в терминах квантованных полей. В этом конструировании важная роль отводится термодинамическим понятиям (необратимости, энтропии)*.
Подведем итоги достигнутого. В первой и второй части нашей книги неоднократно подчеркивалось, что на уровне макроскопических систем первостепенное значение имеет второе начало (и связанное с ним понятие необратимости).
В третьей части мы стремились показать, что в настоящее время открывается возможность выхода за рамки макроскопического уровня, и продемонстрировать, что означает необратимость на микроскопическом уровне.
Переход от макроскопического уровня к микроскопическому требует коренного пересмотра наших взглядов на фундаментальные законы физики. Только полностью избавившись от классических представлений
* Речь, очевидно, идет о понятии материи в специально научном, физическом, а не философском смысле. — Прим. перев.
359
(как в случае достаточно нестабильных систем), мы можем говорить о «внутренней случайности» и «внутренней необратимости».
Для таких систем мы можем ввести новое расширенное описание времени с помощью оператора Т. Как было показано на примере «преобразования пекаря» (гл. 9 «От случайности к необратимости»), этот оператор имеет в качестве собственных функций разбиения фазового пространства (см. рис. 39).
Таким образом, ситуация, с которой мы сталкиваемся, очень напоминает ситуацию, сложившуюся в квантовой механике. Существуют два возможных описания: либо мы выбираем точку в фазовом пространстве и тогда не знаем, какому разбиению она принадлежит и, следовательно, каков ее внутренний возраст, либо мы знаем внутренний возраст, но тогда нам известно только разбиение, а не точная локализация точки.
После того как мы ввели внутреннее время Т, энтропию можно использовать как принцип отбора для перехода от начального описания с помощью функции распределения r к новому описанию с помощью функции распределения r^[1], которая обладает внутренней стрелой времени, согласующейся со вторым началом термодинамики. Основное различие между r и r^проявляется в разложениях этих функций по собственным функциям оператора Т (см. гл. 7 «Рождение квантовой механики»). В функцию r все внутренние возрасты независимо от того, принадлежат ли они прошлому или будущему, входят симметрично. В функции r^ в отличие от r прошлое и будущее играют различные роли: прошлое входит в r^, а будущее остается неопределенным. Асимметрия прошлого и будущего означает, что существует стрела времени. Новое описание обладает важной особенностью, заслуживающей того, чтобы ее отметить: начальные условия и законы изменения перестают быть независимыми. Состояние со стрелой времени возникает под действием закона, также наделенного стрелой времени и трансформирующего состояние, но сохраняющего стрелу времени.
В нашей книге мы рассматривали главным образом классическую ситуацию20. Но все сказанное применимо и к квантовой механике, в которой ситуация несколько сложнее, поскольку существование постоянной Планка
360
лишает смысла понятие траектории и тем самым приводит к своего рода делокализации в фазовом пространстве. Таким образом, квантовомеханическая делокализация накладывается на делокализацию, вызванную необратимостью.
В гл. 7 мы подчеркивали, что две великие революции в физике XX в. связаны с включением в фундаментальную структуру физики двух запретов, чуждых классической механике: невозможности распространения сигналов со скоростью больше скорости света и невозможности одновременного измерения координат и импульса.
Неудивительно, что и второе начало, также ограничивающее наши возможности активного воздействия на материю, приводит к глубоким изменениям в структуре основных законов физики.
Нам бы хотелось закончить третью часть нашей книги предостережением. Феноменологическую теорию необратимых процессов ныне можно считать вполне сложившейся. В отличие от нее микроскопическая теория необратимых процессов делает лишь первые шаги. Когда читалась верстка этой книги, в нескольких лабораториях подготавливались эксперименты для проверки правильности микроскопической теории. Пока эти эксперименты не будут выполнены, умозрительный элемент в новой теории неизбежен.
361
ЗАКЛЮЧЕНИЕ. С ЗЕМЛИ НА НЕБО: НОВЫЕ ЧАРЫ ПРИРОДЫ
В любой попытке сблизить области опыта, относящиеся к духовной и физической сторонам нашей натуры, время занимает ключевую позицию.
А. С. Эддингтон1
1. Открытая наука
Наука, несомненно, подразумевает активное воздействие на природу, но вместе с тем она является попыткой понять природу, глубже проникнуть в вопросы, которые задавало не одно поколение людей. Один из этих вопросов звучит как лейтмотив (почти как наваждение), на страницах этой книги, как, впрочем, и в истории естествознания и философии. Речь идет об отношении бытия и становления, неизменности и изменения.
В начале нашей книги мы упоминали о вопросах, над которыми размышляли еще философы-досократики. Не накладывается ли изменение, порождающее все вещи и обрекающее их на гибель, извне на некую инертную материю? Не является ли изменение результатом внутренней независимой активности материи? Необходима ли внешняя побуждающая сила или становление внутренне присуще материи? Естествознание XVII в. встало в оппозицию к биологической модели спонтанной и автономной организации живых существ. Но тогда же естествознанию пришлось столкнуться с другой фундаментальной альтернативой. Является ли природа внутренне случайной? Не является ли упорядоченное поведение лишь преходящим результатом случайных столкновений атомов и их неустойчивых соединении?
Одним из главных источников неотразимой привлекательности современной науки было ощущение, что она открывала вечные законы, таившиеся в глубине нескончаемых преобразований природы, и тем навсегда изгнала время и становление. Открытие порядка в природе рождало чувство интеллектуальной уверенности. Вот что пишет об этом французский социолог Леви-Брюль:
362
«У нас существует постоянное ощущение интеллектуальной уверенности, столь прочной, что, кажется, нечто не в состоянии ее поколебать. Ибо даже если предположить, что мы внезапно наткнулись на какое-нибудь совершенно таинственное явление, причины которого совершенно ускользают от нас, то мы все же совершенно убеждены в том, что наше неведение является временным, что такие причины у данного явления существуют, что раньше или позже они будут вскрыты. Таким образом, природа, среди которой мы живем, является для нас, так сказать, уже заранее «интеллектуализированной», умопостигаемой: она вся — порядок и разум, как и тот ум, который ее мыслит и среди которой он движется. Наша повседневная деятельность вплоть до самых незначительных своих деталей предполагает полную и спокойную веру в неизменность законов природы»2.
Ныне наша уверенность «в рациональности» природы оказалась поколебленной отчасти в результате бурного роста естествознания в наше время. Как было отмечено в «Предисловии», наше видение природы претерпело коренные изменения. Ныне мы учитываем такие аспекты изменения, как множественность, зависимость от времени и сложность. Некоторые из сдвигов, происшедших в наших взглядах на мир, описаны в этой книге.
Мы искали общие, всеобъемлющие схемы, которые допускали бы описание на языке вечных законов, но обнаружили время, события, частицы, претерпевающие различные превращения. Занимаясь поиском симметрии, мы с удивлением обнаружили на всех уровнях — от элементарных частиц до биологии и экологии — процессы, сопровождающиеся нарушением симметрии. Мы описали в нашей книге столкновение между динамикой с присущей ей симметрией во времени и термодинамикой, для которой характерна односторонняя направленность времени.
На наших глазах возникает новое единство: необратимость есть источник порядка на всех уровнях. Необратимость есть тот механизм, который создает порядок из хаоса. Как могли столь радикальные изменения в наших взглядах на природу произойти за сравнительно короткое время — на протяжении последних десятилетий? Мы убеждены, что столь быстрая и глубокая перестройка наших взглядов на мир свидетельствует о
363
значительной роли, отводимой в нашем восприятии природы построениям нашего разума. Эту мысль великолепно выразил Нильс Бор в беседе с Вернером Гейзенбергом во время экскурсии в замок Кронберг:
«Разве не странно, как изменяется этот замок, стоит лишь на миг вообразить, что здесь жил Гамлет? Как ученые, мы твердо знаем, что замок построен из камней, и восхищаемся тем, как искусно сложил их архитектор. Камни, зеленая, потемневшая от времени крыша, деревянная резьба в церкви — вот и весь замок. Ничто из названного мной не должно было бы измениться от того, что здесь жил Гамлет, и тем не менее все полностью изменяется. Стены и крепостные валы начинают говорить на другом языке... Мы знаем о Гамлете лишь то, что его имя встречается в хронике XIII в. ...Но каждый знает, какие вопросы Шекспир заставил его задавать, в какие глубины человеческого духа он проник, поэтому Гамлет не мог не обрести свое место на земле — здесь, в Кронберге»3.
Вопрос о природе реальности был центральным в увлекательном диалоге между Эйнштейном и Тагором4. Эйнштейн подчеркивал, что наука должна быть. независима от существования наблюдателя. Такая позиция привела его к отрицанию реальности времени как необратимости, эволюции. Тагор же утверждал, что, даже если бы абсолютная истина могла существовать, она была бы недоступна человеческому разуму. Интересно, что в настоящее время эволюция науки происходит в направлении, указанном великим индийским поэтом. Что бы мы ни называли реальностью, она открывается нам только в процессе активного построения, в котором мы участвуем. По меткому выражению Д. С. Котари, «простая истина состоит в том, что ни измерение, ни эксперимент, ни наблюдение невозможны без соответствующей теоретической схемы»5.
2. Время и времена
На протяжении более трех столетий в физике господствовало мнение о том, что время по существу представляет собой геометрический параметр, позволяющий описывать последовательность динамических состояний. Эмиль Мейерсон6 предпринял попытку представить ис-
364
торию современной науки как постепенную реализацию того, что он считал основной категорией человеческого разума: сведения различного и изменяющегося к тождественному и неизмененному. Время подлежало полному исключению.
Ближе к нашему времени выразителем той же тенденции в формулировке физики без ссоотнесения с необратимостью на фундаментальном уровне стал Эйнштейн.
Историческая сцена разыгралась 6 апреля 1922 г.7 в Париже на заседании Философского общества (Societe de Philosophiе), на котором Анри Бергсон в полемике с Эйнштейном пытался отстаивать множественность сосуществующих «живых» времен. Ответ Эйнштейна был бесповоротен: он категорически отверг «время философов». Живой опыт не может спасти то, что отрицается наукой.
Реакция Эйнштейна в какой-то мере была обоснованна. Бергсон явно не понимал теорию относительности Эйнштейна. Но отношение Эйнштейна к Бергсону не было свободно от предубеждения: duree (длительность), бергсоновское «живое» время относится к числу фундаментальных, неотъемлемых свойств становления, необратимости, которую Эйнштейн был склонен принимать лишь на феноменологическом уровне. Мы уже упоминали о беседах Эйнштейна с Карнапом (см. гл. 7). Для Эйнштейна различия между прошлым, настоящим и будущим лежали за пределами физики.
В этой связи большой интерес представляет переписка между Эйнштейном и одним из ближайших друзей его молодости в цюрихский период Микеланджело (Мишелем) Бессо8. Инженер по профессии и естествоиспытатель по призванию, Бессо в последние годы жизни все больше интересовался философией, литературой и проблемами, затрагивающими самую суть человеческого бытия. В своих письмах к Эйнштейну он непрестанно задавал одни и те же вопросы. Что такое необратимость? Как она связана с законами физики? И Эйнштейн неизменно отвечал Бессо с терпением, которое он выказывал только к своему ближайшему другу: необратимость есть лишь иллюзия, обусловленная «неверными» начальными условиями. Диалог двух друзей продолжался многие годы до кончины Бессо, который был старше Эйнштейна на восемь лет и умер за несколько месяцев до смерти Эйнштейна. В последнем письме
365
к сестре и сыну Бессо Эйнштейн писал: «Своим прощанием с этим удивительным миром он [Мишель] ...несколько опередил меня. Но это ничего не значит. Для нас, убежденных физиков, различие между прошлым, настоящим и будущим — не более чем иллюзия, хотя и весьма навязчивая». В эйнштейновском стремлении постичь фундаментальные законы физики познаваемое отождествлялось с незыблемым.
Почему Эйнштейн столь упорно противился введению необратимости в физику? Об этом можно лишь догадываться. Эйнштейн был очень одиноким человеком. У него было мало друзей, мало сотрудников, мало студентов. Он жил в мрачную эпоху: две мировые войны, разгул антисемитизма. Неудивительно, что для Эйнштейна наука стала своего рода средством преодоления бурлящего потока времени. Сколь разителен контраст между установкой на «безвременную» науку и научными трудами самого Эйнштейна! Его мир полон наблюдателей-ученых, которые находятся в различных системах отсчета, движущихся относительно друг друга, или на различных звездах, отличающихся своими гравитационными полями. Все эти наблюдатели обмениваются информацией, передаваемой с помощью сигналов по всей Вселенной. Эйнштейна интересовал лишь объективный смысл этой коммуникации. Однако не будет преувеличением сказать, что Эйнштейн, по-видимому, был весьма близок к признанию тесной взаимосвязи между передачей сигналов и необратимостью. Коммуникация заложена в самой основе наиболее обратимого из процессов, доступных человеческому разуму, — прогрессивного роста знания.
3. Энтропийный барьер
В гл. 9 мы описали второе начало как принцип отбора: каждому начальному условию соответствует некоторая «информация». Допустимыми считаются все начальные условия, для которых эта информация конечна. Но для обращения времени необходима бесконечная информация; мы не можем создавать ситуации, которые переносили бы нас в прошлое! Чтобы предотвратить путешествия в прошлое, мы возвели энтропийный барьер.
Нельзя не отметить интересную аналогию между эн-
366
тропийным барьером и представлением о скорости света как о максимальной скорости передачи сигналов. Существование предельной скорости распространения сигналов — один из основных постулатов теории относительности Эйнштейна (см. гл. 7). Такой барьер необходим для придания смысла причинности. Предположим, что мы покинули бы Землю на фантастическом космическом корабле, способном развивать сверхсветовую скорость. Тогда мы смогли бы обгонять световые сигналы и тем самым переноситься в свое собственное прошлое. Энтропийный барьер также необходим для того, чтобы придать смысл передаче сигналов. Мы уже упоминали о том, что необратимость и передача сигналов тесно связаны между собой. Норберт Винер убедительно показал, к каким ужасным последствиям привело бы существование двух направлений времени. Следующий отрывок из знаменитой «Кибернетики» Винера заслуживает того, чтобы привести его:
«Очень интересный мысленный опыт — вообразить разумное существо, время которого течет в обратном направлении по отношению к нашему времени. Для такого существа никакая связь с нами не была бы возможна. Сигнал, который оно послало бы нам, дошел бы к нам в логическом потоке следствий — с его точки зрения — и причин — с нашей точки зрения. Эти причины уже содержались в нашем опыте и служили бы естественным объяснением его сигналов без предположения о том, что разумное существо послало сигнал. Если бы оно нарисовало нам квадрат, остатки квадрата представились бы предвестником последнего и квадрат казался бы любопытной кристаллизацией этих остатков, всегда вполне объяснимой. Его значение казалось бы столь же случайным, как те лица, которые представляются при созерцании гор и утесов. Рисование квадрата показалось бы катастрофической гибелью квадрата — внезапной, но объяснимой естественными законами. У этого существа были бы такие же представления о нас. Мы можем, сообщаться только с мирами, имеющими такое же направление времени»9.
Именно энтропийный барьер гарантирует единственность направления времени, невозможность изменить ход времени с одного направления на противоположное.
На страницах нашей книги мы неоднократно обраща-
367
ли внимание на важность доказательства несуществования. Эйнштейн первым осознал важность такого рода доказательства, положив в основу понятия относительной одновременности невозможность передачи информации со скоростью, большей, чем скорость света. Вся теория относительности строится вокруг исключения «ненаблюдаемых» одновременностей. Эйнштейн усматривал в этом шаге аналогию с запретом вечного двигателя в термодинамике. Однако некоторые современники Эйнштейна, например Гейзенберг, указывали на важное различие между несуществованием вечного двигателя и невозможностью передачи сигналов со сверхсветовыми скоростями. В термодинамике речь идет об утверждении, что некоторая ситуация не встречается в природе; в теории относительности утверждается невозможность некоторого наблюдения, т. е. своего рода диалога, коммуникации между природой и тем, кто ее описывает. Воздвигнув квантовую механику на основе запрета всего, что квантовый принцип неопределенности определяет как ненаблюдаемое, Гейзенберг считал себя следующим примеру Эйнштейна, несмотря на скептицизм, с которым Эйнштейн встретил квантовую механику.
До тех пор пока мы считали, что второе начало выражает лишь практическую невероятность того или иного процесса, оно не представляло теоретического интереса. У нас всегда оставалась надежда, что, достаточно поднаторев в технике, нам все же удастся преодолеть запрет, налагаемый вторым началом. Но, как мы видели, этим надеждам не суждено было сбыться. Корень всех «бед» — в отборе допустимых состояний. Лишь после того, как возможные состояния отобраны, вступает в силу вероятностная интерпретация Больцмана. Именно Больцман впервые установил, что возрастание энтропии соответствует возрастанию вероятности, беспорядка. Но интерпретация Больцмана основывается на предпосылке, что энтропия есть принцип отбора, нарушающий временную симметрию. Любая вероятностная интерпретация становится возможной лишь после того, как временная симметрия нарушена.
Несмотря на то что мы многое почерпнули из больцмановской интерпретации энтропии, наша интерпретация второго начала зиждется на совсем другой основе, поскольку мы имеем последовательность
368
второе начало как принцип отбора, приводящий к нарушению симметрии
?
вероятностная интерпретаци
?
необратимость как усиление беспорядка
Только объединение динамики и термодинамики с помощью введения нового принципа отбора придает второму началу фундаментальное значение эволюционной парадигмы естественных наук. Этот пункт настолько важен, что мы остановимся на нем подробнее.
4. Эволюционная парадигма
Мир динамики, классической или квантовой, — мир обратимый. В гл. 8 мы уже отмечали, что в таком мире эволюция невозможна; «информация», представимая в динамических структурных единицах, остается постоянной. Тем большее значение имеет открывающаяся теперь возможность установить эволюционную парадигму в физике, причем не только на макроскопическом, но и на всех уровнях описания. Разумеется, для этого необходимы особые условия: мы видели, что сложность системы должна превышать определенный порог. Впрочем, необычайная важность необратимых процессов свидетельствует о том, что большинство рассматриваемых нами систем удовлетворяет этому требованию. Примечательно, что восприятие ориентированного времени возрастает по мере того, как повышается уровень биологической организации и достигает, по-видимому, кульминационной точки в человеческом сознании.
Насколько велика общность этой эволюционной парадигмы? Она охватывает изолированные системы, эволюционирующие к хаосу, и открытые системы, эволюционирующие ко все более высоким формам сложности. Неудивительно, что метафора энтропии соблазнила авторов некоторых работ по социальным и экономическим проблемам. Ясно, что, применяя естественнонаучные понятия к социологии или экономике, необходимо соблюдать осторожность. Люди — не динамические объекты, и переход к термодинамике недопустимо формулировать как принцип отбора, подкрепляемый динамикой. На человеческом уровне необратимость обретает более глубокий смысл, который для нас неотделим от смысла нашего существования. С этой точки зрени
369
важно отметить, что во внутреннем ощущении необратимости мы не усматриваем более субъективное впечатление, отчуждающее нас от внешнего мира, а видим в нем своего рода отличительный признак нашего участия в мире, находящемся во власти эволюционной парадигмы.
Космологические проблемы известны своей необычайной трудностью. Мы до сих пор не знаем, какую роль играла гравитация на ранних этапах развития Вселенной. Возможна ли формулировка второго начала, включающая в себя гравитацию, или между термодинамикой и гравитацией существует своего рода диалектический баланс? Необратимость заведомо не могла бы появиться внезапно в мире с обратимым временем. Происхождение необратимости — проблема космологическая, и для решения ее необходимо проанализировать развитие Вселенной на ранних стадиях. Мы ставим перед собой более скромную задачу. Что означает необратимость сегодня? Как она связана с положением, которое мы занимаем в описываемом нами мире?
5. Актеры и зрители
Отрицание физикой становления породило глубокий раскол внутри самого естествознания и привело к отчуждению его от философии. То, что первоначально было рискованной ставкой в духе господствовавшей аристотелевской традиции, со временем превратилось в догматическое утверждение, направленное против тех (химиков, биологов, медиков), для кого в природе существовало качественное многообразие. В конце XIX в. этот конфликт, протекавший внутри естествознания, был перенесен на отношение между естествознанием и остальной культурой, в особенности между естествознанием и философией. В гл. 3 мы рассказали об этом аспекте истории западноевропейской мысли с ее непрестанной борьбой за новое единство знания. «Живое» время, Lebenswelt (жизненный мир) представителей феноменологии, противостоящий объективному времени физики, возможно, отвечали потребности возведения защитных сооружений, способных противостоять вторжению точного естествознания.
Мы убеждены в том, что ныне эпоха безапелляционных утверждений и взаимоисключающих позиций миновала. Физики не обладают более привилегией на экстер-
370
риториальность любого рода. Как ученые, они принадлежат своей культуре и в свою очередь вносят немалый вклад в ее развитие. Мы достигли ситуации, близкой к той, которая была давно осознана в социологии. Еще Мерло-Понти подчеркивал необходимость не упускать из виду то, что он называл «истиной в длиной ситуации»:
«До тех пор пока мой идеал — абсолютный наблюдатель, знание, безотносительное к какой бы то ни было точке зрения, моя ситуация является лишь источником ошибок. Но стоит лишь мне осознать, что через нее я связан со всеми действиями и всем знанием, имеющими смысл для меня, и что она постепенно наполняется всем могущим иметь смысл для меня, и мой контакт с социальным в ограниченности моего бытия открывается мне как исходный пункт всякой, в том числе и научной, истины, а поскольку мы, находясь внутри истины и не имея возможности выбраться из нее наружу, имеем некоторое представление об истине, все, что я могу сделать, — это определить истину в рамках данной ситуации»10.
Именно этой концепции знания, объективного и деятельного, мы придерживались в нашей книге.
В своих «Темах»11 Мерло-Понти утверждал также, что «философские» открытия естествознания, концептуальные преобразования его основ нередко происходят в результате негативных открытий, служащих толчком к пересмотру сложившихся взглядов и отправным пунктом для перехода к противоположной точке зрения. Доказательства невозможности, или несуществования (будь то в теории относительности, квантовой механике или термодинамике), показали, что природу невозможно описывать «извне», с позиций зрителя. Описание природы — живой диалог, коммуникация, и она подчинена ограничениям, свидетельствующим о том, что мы — макроскопические существа, погруженные в реальный физический мир.
Ситуацию, какой она представляется нам сегодня, можно условно изобразить в виде следующей диаграммы:
наблюдатель ® динамика
диссипативные структуры ?
необратимость ¬ случайность ¬ неустойчивые динамические системы
371
Мы начинаем с наблюдателя, измеряющего координаты и импульсы и исследующего, как они изменяются во времени. В ходе своих измерений он совершает открытие: узнает о существовании неустойчивых систем и других явлений, связанных с внутренней случайностью и внутренней необратимостью, о которых мы говорили в гл. 9. Но от внутренней необратимости и энтропии мы переходим к диссипативным структурам в сильно неравновесных системах, что позволяет нам понять ориентированную во времени деятельность наблюдателя.
Не существует научной деятельности, которая не была бы ориентированной во времени. Подготовка эксперимента требует проведения различия между «до» и «после». Распознать обратимое движение мы можем только потому, что нам известно о необратимости. Из нашей диаграммы видно, что, описав полный круг, мы вернулись в исходную точку и теперь видим себя как неотъемлемую часть того мира, который мы описываем.
Наша схема не априорна — она выводима из некоторой логической структуры. Разумеется, в том, что в природе реально существуют диссипативные структуры, нет никакой логической необходимости. Однако непреложный «космологический факт» состоит в следующем: для того чтобы макроскопический мир был миром обитаемым, в котором живут «наблюдатели», т. е. живым миром, Вселенная должна находиться в сильно неравновесном состоянии. Таким образом, наша схема соответствует не логической или эпистемологической истине, а относится к нашему состоянию макроскопических существ в сильно неравновесном мире. Наша схема обладает еще одной существенной отличительной особенностью: она не предполагает никакого фундаментального способа описания. Каждый уровень описания следует из какого-то уровня и в свою очередь влечет за собой другой уровень описания. Нам необходимо множество уровней описания, ни один из которых не изолирован от других, не претендует на превосходство над другими.
Мы уже отмечали, что необратимость — явление отнюдь не универсальное. Эксперименты в условиях термодинамического равновесия мы можем производить лишь в ограниченных областях пространства. Кроме того, значимость временных масштабов варьируется в зависимости от объекта. Камень подвержен изменениям на отрезке времени масштаба геологической эволюции. Че-
372
ловеческие сообщества, особенно в наше время, имеют свои, существенно более короткие временные масштабы. Мы уже упоминали о том, что необратимость начинается тогда, когда сложность эволюционирующей системы превосходит некий порог. Примечательно, что с увеличением динамической сложности (от камня к человеческому обществу) роль стрелы времени, эволюционных ритмов возрастает. Молекулярная биология показала, что внутри клетки все живет отнюдь не однообразно. Одни процессы достигают равновесия, другие, регулируемые ферментами, протекают в сильно неравновесных условиях. Аналогичным образом стрела времени играет в окружающем нас мире самые различные роли. С этой точки зрения (с учетом ориентации во времени всякой активности) человек занимает в мире совершенно исключительное положение. Особенно важным, как уже говорилось в гл. 9, мы считаем то, что необратимость, или стрела времени, влечет за собой случайность. «Время — это конструкция». Значение этого вывода, к которому независимо пришел Валери12, выходит за рамки собственно естествознания.
6. Вихрь в бурлящей природе
В нашем обществе с его широким спектром «познавательных технологий» науке отводится особое место. Наука — это поэтическое вопрошание природы в том смысле, что поэт выступает одновременно и как созидатель, активно вмешивающийся в природу и исследующий ее. Современная наука научилась с уважением относиться к изучаемой ею природе. Из диалога с природой, начатого классической наукой, рассматривавшей природу как некий автомат, родился совершенно другой взгляд на исследование природы, в контексте которого активное вопрошание природы есть неотъемлемая часть ее внутренней активности.
В начале «Заключения» мы уже говорили о том, что существовавшее некогда ощущение интеллектуальной уверенности было поколеблено. Ныне мы располагаем всем необходимым для того, чтобы спокойно обсудить, как соотносятся между собой наука (естествознание) и философия. Мы уже упоминали о конфликте между Эйнштейном и Бергсоном. В некоторых сугубо физических вопросах Бергсон, несомненно, заблуждался, но