Библиотека    Новые поступления    Словарь    Карта сайтов    Ссылки





назад содержание далее

Заключение с.348-373

Рис. 41. Растягивающиеся (последовательность А) и сжимаю­щиеся (последовательность С) слои пересекают различное число кле­ток («ящиков»), на которые разделено фазовое пространство «преоб­разования пекаря». Все «квадраты», принадлежащие данной последо­вательности, относятся к одному моменту времени t=2, но число кле­ток, на которые разделен каждый квадрат, зависит от начала отсчета времени системы ti.

между вероятностями исчезает, H -функция обращается в нуль. Чтобы сравнить его с «преобразованием пекаря» и двумя порождаемыми им цепями Маркова, необходи­мо уточнить, как выбираются соответствующие ячейки. Предположим, что мы рассматриваем систему в момент времени 2 (см. рис. 39) и что в исходном состоянии система находилась в момент времени ti. Согласно на­шей динамической теории, клетки соответствуют всем возможным пересечениям разбиений от t=ti до t=2. На рис. 39 мы видим, что, когда ti отходит в прошлое,

348

ячейки становятся все более тонкими, поскольку нам приходится вводить все больше и больше вертикальных подразделений. Это отчетливо видно на рис. 41, где-в последовательности В мы получаем при движении сверху вниз ti-=1, 0, —1 и, наконец, ti=—2. Нетрудно видеть, что число ячеек возрастает при этом с 4 до 32.

Коль скоро мы располагаем ячейками, естественно сравнить неравновесное распределение с равновесным в каждой ячейке. В рассматриваемом нами примере неравновесное распределение есть либо растягивающийся слой (последовательность А), либо сжимающий­ся слой (последовательность С). Обратим внимание на то, что по мере сдвига ti в прошлое растягивающийся слой занимает все большее число ячеек: при ti=—1 он занимает 4 ячейки, при ti=—2 — уже 8 ячеек и т. д. В результате, воспользовавшись формулой из гл. 8, мы получаем конечный «ответ», даже если число ячеек неограниченно возрастает при ti®?.

Сжимающийся слой в отличие от растягивающегося при любых ti всегда локализован в 4 ячейках. Это при­водит к тому, что H-функция для сжимающегося слоя обращается в бесконечность, когда ti уходит в прош­лое. Таким образом, различие между динамической си­стемой и цепью Маркова состоит в том, что в случае динамической системы необходимо рассматривать бес­конечно много ячеек. Приготовить или наблюдать мож­но лишь такие меры или вероятности, которые в преде­ле при бесконечно большом числе ячеек дают конечную информацию или конечную H-функцию. Это исключает сжимающиеся слои18. По той же причине необходимо исключить и распределения, сосредоточенные в одной точке. Начальные условия, соответствующие одной точ­ке в неустойчивой системе, соответствовали бы беско­нечной информации. Следовательно, ни реализовать, ни наблюдать их невозможно. И в этом случае второе нача­ло выступает в роли принципа отбора.

В классической схеме начальные условия были про­извольными. Для неустойчивых систем произвол исклю­чается. Каждое начальное условие обладает в случае неустойчивых систем определенным информационным содержанием, которое зависит от динамики системы (подобно тому как в «преобразовании пекаря» для вы­числения информационного содержания мы прибегли к последовательному делению ячеек). Начальные усло-

349

вия и динамика перестают быть независимыми. Второе начало как принцип отбора представляется нам настоль­ко важным, что мы хотели бы привести еще один при­мер, на этот раз связанный с динамикой корреляций.

7. Динамика корреляций

В гл. 8 мы кратко обсудили эксперимент с обраще­нием скоростей. Возьмем разреженный газ и проследим за его эволюцией во времени. При t=t0 обратим скорости всех молекул газа. Газ вернется в начальное состоя­

Рис. 42. Рассеяние частиц. Первоначально скорости всех частиц равны. После соударения равенство скоростей нарушается и рас­сеянные частицы коррелированы с рассеятелем (корреляции здесь и далее изображены волнистыми линиями).

ние. Мы уже обращали внимание на то, что для воспро­изведения своего прошлого газу необходимо некое хра­нилище информации — своего рода «память». Такой па­мятью являются корреляции между частицами19.

Рассмотрим сначала облако частиц, движущихся к мишени (тяжелой неподвижной частице). Схематиче­ски ситуация изображена на рис. 42. В далеком прош­лом корреляций между частицами не было. Рассеяние приводит к двум эффектам (см. гл. 8): оно «разбрасы­вает» частицы (делает распределение скоростей более симметричным) и, кроме того, порождает корреляции между рассеянными частицами и рассеивателем. Корре­ляции станут заметными, если обратить скорости (на­пример, с помощью сферического зеркала). Эта ситуа­ция изображена на рис. 43 (волнистыми линиями ус­ловно показаны корреляции). Таким образом, роль рас-

350

сеяния сводится к следующему. При прямом рассеянии распределение скоростей становится более симметрич­ным и возникают корреляции между частицами. При обратном рассеянии распределение скоростей становится менее симметричным, а корреляции исчезают. Таким образом, учет корреляций приводит к основному раз­личию между прямым и обратным рассеянием.

Аналогичные рассуждения применимы и к системе многих тел. Здесь также возможны ситуации двух ти­-

Рис. 43. Влияние обращения скоростей после соударения: после нового «обращенного» соударения корреляции подавлены и скоро­сти всех частиц равны.

пов. В одном случае (прямой процесс) некоррелирован­ные частицы налетают, рассеиваются и порождают кор­релированные частицы (рис. 44). В другом случае (об­ратный процесс) коррелированные частицы налетают, корреляции при столкновениях нарушаются и после-столкновении частицы уже не коррелированы (рис. 45).

Прямой и обратный процессы отличаются последо­вательностью столкновений и корреляций во времени. В первом случае имеют место корреляции послестолкновительиыс («постстолкновительные»). Имея в виду раз­личие между пред- и послестолкновительными корреля­циями, вернемся к эксперименту с обращением скоро­стей. Начнем при t=0 — с начального состояния, соот­ветствующего корреляциям между частицами. В интер­вале времени от t=0 до t=t0 система эволюционирует «нормально»: в результате столкновений распределение скоростей приближается к распределению Максвелла. Кроме того, столкновения порождают послестолкновительные корреляции между частицами. При t=t0 проис­ходит обращение скоростей и возникает качественно но­вая ситуация. Послестолкновительные корреляции ста-

351

новятся предстолкновительными. В интервале времени от t=t0 до t=2t0 эти предстолкновительные корреляции исчезают, распределение скоростей становится менее симметричным, и к моменту времени t=2t0 полностью

восстанавливается некоррелированное состояние. Таким образом, история системы делится на два этапа. На первом этапе столкновения трансформируются в корре-

Рис. 44. Возникновение корреляций после соударения (корреляции условно изображены волнистыми линиями).

Рис. 45. Разрушение предстолкновительных корреляций (волнистые линии) при столкновениях.

ляции, на втором этапе происходит обратное превраще­ние корреляций в столкновения. Оба типа процессов — прямой и обратный — не противоречат законам дина­мики. Кроме того, как мы уже упоминали в гл. 8, полная «информация», описываемая динамикой, остается постоянной. Мы видели также, что в больцмановском описании эволюция от t=0 до t=t0 соответствует обычному убыванию H-функции, а в интервале от t=t0 до t=2t0 эволюция протекала бы аномально: H-функция возрастала бы, а энтропия убывала. Но это означало бы, что можно придумать эксперименты, как лаборатор­ные, так и численные, в которых нарушалось бы второе начало! Необратимость на интервале [0, t0] компенси­ровалась бы «антинеобратимостью» на интервале [t0, 2t0 ].

352

Такое положение нельзя признать удовлетворитель­ным. Все трудности устраняются, если перейти к новому «термодинамическому представлению», в рамках которо­го динамика, как в «преобразовании пекаря», становит­ся вероятностным процессом, аналогичным цепи Марко­ва. Следует также учесть, что обращение — процесс не

Рис. 46. Временная эволюция H-функции в эксперименте с об­ращением скоростей. В момент времени t0 происходит обращение скоростей — H-функция претерпевает разрыв. В момент времени 2t0 система находится в таком же состоянии, как в момент времени 0, — H-функцця возвращается к своему начальному значению. При всех t, за исключением t=t0, H-функция убывает. Важно подчеркнуть, что при t=t0, H-функция принимает два различных значения.

«естественный». Для обращения скоростей к молекулам извне должна поступить «информация». Для того чтобы обратить скорости, необходимо существо, аналогич­ное демону Максвелла, а за демона Максвелла прихо­дится «платить». Изобразим зависимость H-функции от времени (для какого-нибудь вероятностного процесса). Типичный график такой зависимости представлен на рис. 46. При нашем подходе (в отличие от больцмановского) эффект корреляций при переопределении H-функции сохраняется. Следовательно, в точке обращения скоростей t0 функция H должна претерпевать скачок,

353

поскольку мы внезапно создаем в этой точке аномаль­ные предстолкновительные корреляции, которые должны нарушиться позднее. Скачок H-функции соответствует энтропии, или информационной цене, которую нам при­ходится платить.

Итак, мы получаем адекватное представление вто­рого начала: в любой момент времени H-функция убы­вает (энтропия возрастает). Единственным исключением является точка t0: H-функция претерпевает в ней скачок в тот самый момент, когда система открыта. Лишь воз­действуя на систему извне, можно «обратить» скоро­сти.

Нельзя не отметить еще одно важное обстоятельство: при t=t0 новая H-функция принимает два различных значения, одно — для системы до обращения скоростей, другое — для системы после обращения скоростей. Энт­ропия системы до обращения и после обращения скоро­стей различна. Это напоминает ситуацию, происходя­щую при «преобразовании пекаря», когда сжимающий­ся и растягивающийся слои — скорости, переходящие друг в друга при обращении.

Предположим, что, прежде чем производить обраще­ние скоростей, мы достаточно долго выжидаем. В этом случае послестолкновительные корреляции имели бы произвольный радиус и энтропийная цена за обращение скоростей была бы непомерно велика. А поскольку об­ращение скоростей стало бы нам «не по карману», его исключили бы. На физическом языке это означает, что второе начало запрещает устойчивые предстолкнови­тельные корреляции на больших расстояниях.

Поразительна аналогия с макроскопическим описа­нием второго начала. Тепло и механическая энергия эк­вивалентны с точки зрения сохранения энергии (см. гл. 4 и 5), но отнюдь не второго начала. Кратко говоря, механическая энергия более «высокого сорта» (более когерентна), чем тепло, и всегда может быть превраще­на в тепло. Обратное неверно. Аналогичное различие существует на микроскопическом уровне между столк­новениями и корреляциями. С точки зрения динамики столкновения и корреляции эквивалентны. Столкнове­ния порождают корреляции, а корреляции могут разру­шать последствия столкновений. Но между столкнове­ниями и корреляциями имеется существенное различие. Мы можем управлять столкновениями и порождать

354

корреляции, но мы не в состоянии так управлять корреляциями, чтобы уничтожить последствия, вызванные столкновениями в системе. Этого существенного разли­чия недостает в динамике, но его можно учесть в тер­модинамике. Следует заметить, что термодинамика нигде не вступает в конфликт с динамикой. Термодина­мика вносит важный дополнительный элемент в наше понимание физического мира.

8. Энтропия как принцип отбора

Нельзя не удивляться тому, как сильно микроскопи­ческая теория необратимых процессов напоминает тра­диционную макроскопическую теорию. И в той, и в дру­гой теории энтропия имеет негативный аспект. В мак­роскопической теории энтропия запрещает некоторые процессы, например перетекание тепла от холодного предмета к теплому. В микроскопической теории энтро­пия запрещает некоторые классы начальных условий. Различие между тем, что запрещено, и тем, что разре­шено, поддерживается во времени законами динамики. Из негативного аспекта возникает позитивный: сущест­вование энтропии вместе с ее вероятностной интерпре­тацией. Необратимость не возникает более, как чудо, на некотором макроскопическом уровне. Макроскопическая необратимость лишь делает зримой ориентированную во времени поляризованную природу того мира, в котором мы живем.

Как мы уже неоднократно подчеркивали, в природе существуют системы с обратимым поведением, допус­кающие полное описание в рамках законов классической или квантовой механики. Но большинство интересую­щих нас систем, в том числе все химические и, следова­тельно, все биологические системы, ориентировано во времени на макроскопическом уровне. Их отнюдь не иллюзорная однонаправленность во времени отражает нарушение временной симметрии на микроскопическом уровне. Необратимость существует либо на всех уров­нях, либо не существует ни на одном уровне. Она не может возникнуть, словно чудо, при переходе с одного уровня на другой.

Мы также неоднократно отмечали, что необрати­мость является исходным пунктом других нарушений

355

симметрии. Например, по общему мнению, различие между частицами и античастицами могло возникнуть только в неравновесном мире. Это утверждение может быть распространено на многие другие ситуации. Впол­не вероятно, что с необратимостью через отбор подхо­дящей бифуркации связана и киральная симметрия. Многие из активно проводимых ныне исследований по­священы выяснению того, каким образом необратимость можно «вписать» в структуру материи.

Возможно, читатель обратил внимание на то, что при выводе микроскопической необратимости основной ак­цент мы делали на классической динамике. Но представ­ления о корреляциях и различии между пред- и послестолкновительными корреляциями применимы не только к классическим, но и к квантовым системам. Исследова­ние квантовых систем более сложно, чем исследование классических, что обусловлено различием между клас­сической и квантовой механикой. Даже малые класси­ческие системы, например система, состоящая из не­скольких твердых шаров, могут обладать внутренней необратимостью. Но для того чтобы достичь внутрен­ней необратимости в квантовой механике, необходимы большие системы (со многими степенями свободы), ко­торые встречаются в жидкости, газах или теории поля. Ясно, что исследование больших систем сопряжено со значительно большими математическими трудностями. Именно это не позволяет нам рассказать здесь о них подробнее. Тем не менее общая ситуация, с которой мы познакомились на примерах классических систем, сохра­няется и в квантовой теории: необратимость там возни­кает вследствие ограниченной применимости понятия волновой функции, обусловленной той или иной разно­видностью квантовой неустойчивости.

Применима в квантовой механике и идея о столкнове­ниях и корреляциях. Как и в классической теории, вто­рое начало запрещает существование в квантовой тео­рии дальнодействующих предстолкновительных корре­ляций.

Переход к вероятностному процессу сопровождается введением новых сущностей. Второе начало как эволю­ция от порядка к хаосу может быть понято именно в терминах этих новых понятий. Второе начало приво­дит к новой концепции материи, к описанию которой мы сейчас переходим.

356

9. Активная матери

Связав энтропию с динамической системой, мы тем самым возвращаемся к концепции Больцмана: вероят­ность достигает максимума в состоянии равновесия. Структурные единицы, которые мы используем при опи­сании термодинамической эволюции, в состоянии равно­весия ведут себя хаотически. В отличие от этого в слабо неравновесных условиях возникают корреляции и коге­рентность.

Здесь мы подходим к одному из наших главных вы­водов: на всех уровнях, будь то уровень макроскопи­ческой физики, уровень флуктуаций или микроскопиче­ский уровень, источником порядка является неравновесность. Неравновесность есть то, что порождает «поря­док из хаоса». Но, как мы уже упоминали, понятие порядка (или беспорядка) сложнее, чем можно было бы думать. Лишь в предельных случаях, например в разреженных газах, оно обретает простой смысл в со­ответствии с пионерскими трудами Больцмана.

Сравним еще раз динамическое описание физическо­го мира с помощью сил и полей и термодинамическое описание. Как уже упоминалось, нетрудно составить программы численных экспериментов, в которых взаимо­действующие частицы, первоначально распределенные случайным образом, в некоторый момент времени рас­полагаются в узлах правильной решетки. Динамическая интерпретация этого явления гласит: возникновение порядка обусловлено игрой сил взаимодействия между частицами. Термодинамическая интерпретация утверж­дает иное: наблюдается общая тенденция к установле­нию хаоса (система изолирована), но хаоса, проявляю­щегося в совершенно других структурных единицах (в рассматриваемой модели это — коллективные моды, охватывающие большое число частиц). В этой связи, по-видимому, уместно напомнить неологизм, введенный нами в гл. 6 для обозначения новых структурных еди­ниц, которые ведут себя некогерентно, несогласованно в состоянии равновесия системы; мы назвали их «гипнонами», или «сомнамбулами», поскольку в состоянии равновесия они движутся как во сне, «не замечая» друг друга. Каждый из гипнонов может обладать сколь угод­но сложной структурой (достаточно вспомнить о том, на­сколько сложны молекулы ферментов), но в состоянии

357

равновесия их сложность обращена «внутрь» и никак не проявляется «снаружи». Например, внутри молекулы существует интенсивное электрическое поле, но в раз­реженном газе этим полем можно пренебречь: оно ни­как не сказывается на поведении других молекул.

Одним из главных предметов исследования в совре­менной физике является проблема элементарных частиц. Известно, что элементарные частицы далеко не элемен­тарны. По мере того как мы поднимаемся по шкале энергий, перед нами открываются все новые и новые «слои» в структуре элементарных частиц. Но что такое элементарная частица? Можно ли считать, например, что планета Земля — элементарная частица? Разумеет­ся, нельзя, потому что часть энергии Земли приходится на ее взаимодействие с Солнцем, Луной и другими пла­нетами. Понятие же элементарной частицы подразуме­вает «автономию», с трудом поддающуюся описанию с помощью обычных понятий. Взять, например, хотя бы электроны и фотоны. При рассмотрении их мы сталки­ваемся с дилеммой: либо отдельные частицы не сущест­вуют (часть энергии «обобществлена» электронами и фотонами, т. е. приходится на коллективные моды сис­темы электронов и протонов), либо, если исключить взаимодействие, существуют свободные (не взаимодей­ствующие) электроны и фотоны. Даже если бы мы зна­ли, как можно каждую частицу заэкранировать от дру­гих, исключение взаимодействия представляется слиш­ком радикальной мерой. Электроны поглощают или ис­пускают фотоны. Выход из создавшегося затруднения мог бы состоять в переходе к физике процессов. В этом случае структурные единицы (элементарные частицы) соответствовали бы определению гипнонов, так как в со­стоянии равновесия они ведут себя независимо. Мы надеемся, что наша гипотеза вскоре получит эксперимен­тальное подтверждение. Особенно подкрепило бы ее об­наружение стрелы времени, выражающей глобальную эволюцию природы, непосредственно во взаимодействии атомов с фотонами (или другими нестабильными элемен­тарными частицами).

Широко обсуждается в современной науке и пробле­ма космической эволюции. Каким образом мир мог быть столь «упорядоченным» на первых этапах эволю­ции после большого взрыва? Тем не менее порядок не­обходим, если мы хотим понять космическую эволюцию

358

как постепенное движение от порядка к хаосу.

Для удовлетворительного решения проблемы нам не­обходимо знать, адекватны ли гипноны экстремальным условиям с колоссальными температурами и плотностью материи, характерными для ранних этапов развития Вселенной. Разумеется, одной термодинамике не под силу решить эти проблемы, как не в силах решить их и одна динамика, даже в высшей своей форме — теории поля. Именно поэтому объединение динамики и термо­динамики открывает новые перспективы. Независимо от всяких прогнозов нельзя не удивляться разительным переменам, происшедшим в естествознании с тех пор, как было сформулировано второе начало (т. е. за какие-нибудь сто пятьдесят лет). Сначала физикам казалось, будто атомистические представления противоречат по­нятию энтропии. Больцман пытался спасти механисти­ческое мировоззрение ценой сведения второго начала к вероятностному утверждению, весьма важному для практических приложений, но не имеющему фундамен­тального значения. Мы не знаем, каким будет оконча­тельное решение, но современная ситуация коренным образом отличается от ситуации полуторавековой дав­ности. Материя теперь не есть нечто данное. В современ­ной теории она «конструируется» из более элементарного понятия в терминах квантованных полей. В этом конст­руировании важная роль отводится термодинамическим понятиям (необратимости, энтропии)*.

Подведем итоги достигнутого. В первой и второй части нашей книги неоднократно подчеркивалось, что на уровне макроскопических систем первостепенное зна­чение имеет второе начало (и связанное с ним понятие необратимости).

В третьей части мы стремились показать, что в на­стоящее время открывается возможность выхода за рамки макроскопического уровня, и продемонстриро­вать, что означает необратимость на микроскопическом уровне.

Переход от макроскопического уровня к микроско­пическому требует коренного пересмотра наших взгля­дов на фундаментальные законы физики. Только пол­ностью избавившись от классических представлений

* Речь, очевидно, идет о понятии материи в специально науч­ном, физическом, а не философском смысле. — Прим. перев.

359

(как в случае достаточно нестабильных систем), мы можем говорить о «внутренней случайности» и «внут­ренней необратимости».

Для таких систем мы можем ввести новое расширен­ное описание времени с помощью оператора Т. Как бы­ло показано на примере «преобразования пекаря» (гл. 9 «От случайности к необратимости»), этот оператор имеет в качестве собственных функций разбиения фазо­вого пространства (см. рис. 39).

Таким образом, ситуация, с которой мы сталкиваем­ся, очень напоминает ситуацию, сложившуюся в кванто­вой механике. Существуют два возможных описания: либо мы выбираем точку в фазовом пространстве и тог­да не знаем, какому разбиению она принадлежит и, сле­довательно, каков ее внутренний возраст, либо мы зна­ем внутренний возраст, но тогда нам известно только разбиение, а не точная локализация точки.

После того как мы ввели внутреннее время Т, энтро­пию можно использовать как принцип отбора для пе­рехода от начального описания с помощью функции распределения r к новому описанию с помощью функ­ции распределения r^[1], которая обладает внутренней стре­лой времени, согласующейся со вторым началом термо­динамики. Основное различие между r и r^проявляется в разложениях этих функций по собственным функциям оператора Т (см. гл. 7 «Рождение квантовой механи­ки»). В функцию r все внутренние возрасты независи­мо от того, принадлежат ли они прошлому или будуще­му, входят симметрично. В функции r^ в отличие от r прошлое и будущее играют различные роли: прошлое входит в r^, а будущее остается неопределенным. Асимметрия прошлого и будущего означает, что сущест­вует стрела времени. Новое описание обладает важной особенностью, заслуживающей того, чтобы ее отметить: начальные условия и законы изменения перестают быть независимыми. Состояние со стрелой времени возникает под действием закона, также наделенного стрелой вре­мени и трансформирующего состояние, но сохраняющего стрелу времени.

В нашей книге мы рассматривали главным образом классическую ситуацию20. Но все сказанное применимо и к квантовой механике, в которой ситуация несколько сложнее, поскольку существование постоянной Планка

360

лишает смысла понятие траектории и тем самым при­водит к своего рода делокализации в фазовом простран­стве. Таким образом, квантовомеханическая делокализация накладывается на делокализацию, вызванную необратимостью.

В гл. 7 мы подчеркивали, что две великие револю­ции в физике XX в. связаны с включением в фундамен­тальную структуру физики двух запретов, чуждых клас­сической механике: невозможности распространения сигналов со скоростью больше скорости света и невоз­можности одновременного измерения координат и им­пульса.

Неудивительно, что и второе начало, также ограни­чивающее наши возможности активного воздействия на материю, приводит к глубоким изменениям в структуре основных законов физики.

Нам бы хотелось закончить третью часть нашей кни­ги предостережением. Феноменологическую теорию не­обратимых процессов ныне можно считать вполне сло­жившейся. В отличие от нее микроскопическая теория необратимых процессов делает лишь первые шаги. Когда читалась верстка этой книги, в нескольких лабо­раториях подготавливались эксперименты для проверки правильности микроскопической теории. Пока эти экс­перименты не будут выполнены, умозрительный элемент в новой теории неизбежен.

361

ЗАКЛЮЧЕНИЕ. С ЗЕМЛИ НА НЕБО: НОВЫЕ ЧАРЫ ПРИРОДЫ

В любой попытке сблизить обла­сти опыта, относящиеся к духовной и физической сторонам нашей натуры, время занимает ключевую позицию.

А. С. Эддингтон1

1. Открытая наука

Наука, несомненно, подразумевает активное воздей­ствие на природу, но вместе с тем она является попыт­кой понять природу, глубже проникнуть в вопросы, ко­торые задавало не одно поколение людей. Один из этих вопросов звучит как лейтмотив (почти как наважде­ние), на страницах этой книги, как, впрочем, и в исто­рии естествознания и философии. Речь идет об отноше­нии бытия и становления, неизменности и изменения.

В начале нашей книги мы упоминали о вопросах, над которыми размышляли еще философы-досократики. Не накладывается ли изменение, порождающее все ве­щи и обрекающее их на гибель, извне на некую инерт­ную материю? Не является ли изменение результатом внутренней независимой активности материи? Необхо­дима ли внешняя побуждающая сила или становление внутренне присуще материи? Естествознание XVII в. встало в оппозицию к биологической модели спонтан­ной и автономной организации живых существ. Но тогда же естествознанию пришлось столкнуться с другой фун­даментальной альтернативой. Является ли природа внут­ренне случайной? Не является ли упорядоченное пове­дение лишь преходящим результатом случайных столк­новений атомов и их неустойчивых соединении?

Одним из главных источников неотразимой привле­кательности современной науки было ощущение, что она открывала вечные законы, таившиеся в глубине нескон­чаемых преобразований природы, и тем навсегда изгна­ла время и становление. Открытие порядка в природе рождало чувство интеллектуальной уверенности. Вот что пишет об этом французский социолог Леви-Брюль:

362

«У нас существует постоянное ощущение интеллек­туальной уверенности, столь прочной, что, кажется, не­что не в состоянии ее поколебать. Ибо даже если пред­положить, что мы внезапно наткнулись на какое-нибудь совершенно таинственное явление, причины которого со­вершенно ускользают от нас, то мы все же совершенно убеждены в том, что наше неведение является временным, что такие причины у данного явления существуют, что раньше или позже они будут вскрыты. Таким обра­зом, природа, среди которой мы живем, является для нас, так сказать, уже заранее «интеллектуализированной», умопостигаемой: она вся — порядок и разум, как и тот ум, который ее мыслит и среди которой он дви­жется. Наша повседневная деятельность вплоть до са­мых незначительных своих деталей предполагает пол­ную и спокойную веру в неизменность законов приро­ды»2.

Ныне наша уверенность «в рациональности» природы оказалась поколебленной отчасти в результате бурного роста естествознания в наше время. Как было отмечено в «Предисловии», наше видение природы претерпело коренные изменения. Ныне мы учитываем такие аспек­ты изменения, как множественность, зависимость от времени и сложность. Некоторые из сдвигов, происшед­ших в наших взглядах на мир, описаны в этой книге.

Мы искали общие, всеобъемлющие схемы, которые допускали бы описание на языке вечных законов, но обнаружили время, события, частицы, претерпевающие различные превращения. Занимаясь поиском симметрии, мы с удивлением обнаружили на всех уровнях — от эле­ментарных частиц до биологии и экологии — процессы, сопровождающиеся нарушением симметрии. Мы описа­ли в нашей книге столкновение между динамикой с при­сущей ей симметрией во времени и термодинамикой, для которой характерна односторонняя направлен­ность времени.

На наших глазах возникает новое единство: необра­тимость есть источник порядка на всех уровнях. Необра­тимость есть тот механизм, который создает порядок из хаоса. Как могли столь радикальные изменения в на­ших взглядах на природу произойти за сравнительно короткое время — на протяжении последних десятиле­тий? Мы убеждены, что столь быстрая и глубокая пе­рестройка наших взглядов на мир свидетельствует о

363

значительной роли, отводимой в нашем восприятии при­роды построениям нашего разума. Эту мысль велико­лепно выразил Нильс Бор в беседе с Вернером Гейзенбергом во время экскурсии в замок Кронберг:

«Разве не странно, как изменяется этот замок, стоит лишь на миг вообразить, что здесь жил Гамлет? Как ученые, мы твердо знаем, что замок построен из кам­ней, и восхищаемся тем, как искусно сложил их архи­тектор. Камни, зеленая, потемневшая от времени крыша, деревянная резьба в церкви — вот и весь замок. Ничто из названного мной не должно было бы измениться от того, что здесь жил Гамлет, и тем не менее все пол­ностью изменяется. Стены и крепостные валы начинают говорить на другом языке... Мы знаем о Гамлете лишь то, что его имя встречается в хронике XIII в. ...Но каж­дый знает, какие вопросы Шекспир заставил его зада­вать, в какие глубины человеческого духа он проник, поэтому Гамлет не мог не обрести свое место на зем­ле — здесь, в Кронберге»3.

Вопрос о природе реальности был центральным в увлекательном диалоге между Эйнштейном и Таго­ром4. Эйнштейн подчеркивал, что наука должна быть. независима от существования наблюдателя. Такая пози­ция привела его к отрицанию реальности времени как необратимости, эволюции. Тагор же утверждал, что, даже если бы абсолютная истина могла существовать, она была бы недоступна человеческому разуму. Инте­ресно, что в настоящее время эволюция науки происхо­дит в направлении, указанном великим индийским поэтом. Что бы мы ни называли реальностью, она от­крывается нам только в процессе активного построения, в котором мы участвуем. По меткому выражению Д. С. Котари, «простая истина состоит в том, что ни измерение, ни эксперимент, ни наблюдение невозможны без соответствующей теоретической схемы»5.

2. Время и времена

На протяжении более трех столетий в физике господ­ствовало мнение о том, что время по существу представ­ляет собой геометрический параметр, позволяющий описывать последовательность динамических состояний. Эмиль Мейерсон6 предпринял попытку представить ис-

364

торию современной науки как постепенную реализацию того, что он считал основной категорией человеческого разума: сведения различного и изменяющегося к тождественному и неизмененному. Время подлежало полному исключению.

Ближе к нашему времени выразителем той же тенденции в формулировке физики без ссоотнесения с необ­ратимостью на фундаментальном уровне стал Эйнштейн.

Историческая сцена разыгралась 6 апреля 1922 г.7 в Париже на заседании Философского общества (Societe de Philosophiе), на котором Анри Бергсон в полемике с Эйнштейном пытался отстаивать множественность со­существующих «живых» времен. Ответ Эйнштейна был бесповоротен: он категорически отверг «время филосо­фов». Живой опыт не может спасти то, что отрицается наукой.

Реакция Эйнштейна в какой-то мере была обосно­ванна. Бергсон явно не понимал теорию относительно­сти Эйнштейна. Но отношение Эйнштейна к Бергсону не было свободно от предубеждения: duree (длитель­ность), бергсоновское «живое» время относится к числу фундаментальных, неотъемлемых свойств становления, необратимости, которую Эйнштейн был склонен прини­мать лишь на феноменологическом уровне. Мы уже упо­минали о беседах Эйнштейна с Карнапом (см. гл. 7). Для Эйнштейна различия между прошлым, настоящим и будущим лежали за пределами физики.

В этой связи большой интерес представляет перепис­ка между Эйнштейном и одним из ближайших друзей его молодости в цюрихский период Микеланджело (Ми­шелем) Бессо8. Инженер по профессии и естествоиспы­татель по призванию, Бессо в последние годы жизни все больше интересовался философией, литературой и проблемами, затрагивающими самую суть человеческого бытия. В своих письмах к Эйнштейну он непрестанно задавал одни и те же вопросы. Что такое необрати­мость? Как она связана с законами физики? И Эйн­штейн неизменно отвечал Бессо с терпением, которое он выказывал только к своему ближайшему другу: необра­тимость есть лишь иллюзия, обусловленная «неверны­ми» начальными условиями. Диалог двух друзей про­должался многие годы до кончины Бессо, который был старше Эйнштейна на восемь лет и умер за несколько месяцев до смерти Эйнштейна. В последнем письме

365

к сестре и сыну Бессо Эйнштейн писал: «Своим проща­нием с этим удивительным миром он [Мишель] ...не­сколько опередил меня. Но это ничего не значит. Для нас, убежденных физиков, различие между прошлым, настоящим и будущим — не более чем иллюзия, хотя и весьма навязчивая». В эйнштейновском стремлении по­стичь фундаментальные законы физики познаваемое отождествлялось с незыблемым.

Почему Эйнштейн столь упорно противился введе­нию необратимости в физику? Об этом можно лишь до­гадываться. Эйнштейн был очень одиноким человеком. У него было мало друзей, мало сотрудников, мало сту­дентов. Он жил в мрачную эпоху: две мировые войны, разгул антисемитизма. Неудивительно, что для Эйнштей­на наука стала своего рода средством преодоления бур­лящего потока времени. Сколь разителен контраст меж­ду установкой на «безвременную» науку и научными трудами самого Эйнштейна! Его мир полон наблюдате­лей-ученых, которые находятся в различных системах отсчета, движущихся относительно друг друга, или на различных звездах, отличающихся своими гравитацион­ными полями. Все эти наблюдатели обмениваются ин­формацией, передаваемой с помощью сигналов по всей Вселенной. Эйнштейна интересовал лишь объективный смысл этой коммуникации. Однако не будет преувели­чением сказать, что Эйнштейн, по-видимому, был весь­ма близок к признанию тесной взаимосвязи между пере­дачей сигналов и необратимостью. Коммуникация зало­жена в самой основе наиболее обратимого из процес­сов, доступных человеческому разуму, — прогрессивного роста знания.

3. Энтропийный барьер

В гл. 9 мы описали второе начало как принцип от­бора: каждому начальному условию соответствует не­которая «информация». Допустимыми считаются все начальные условия, для которых эта информация конеч­на. Но для обращения времени необходима бесконеч­ная информация; мы не можем создавать ситуации, ко­торые переносили бы нас в прошлое! Чтобы предотвра­тить путешествия в прошлое, мы возвели энтропийный барьер.

Нельзя не отметить интересную аналогию между эн-

366

тропийным барьером и представлением о скорости света как о максимальной скорости передачи сигналов. Суще­ствование предельной скорости распространения сигна­лов — один из основных постулатов теории относитель­ности Эйнштейна (см. гл. 7). Такой барьер необходим для придания смысла причинности. Предположим, что мы покинули бы Землю на фантастическом космическом корабле, способном развивать сверхсветовую скорость. Тогда мы смогли бы обгонять световые сигналы и тем самым переноситься в свое собственное прошлое. Энтро­пийный барьер также необходим для того, чтобы при­дать смысл передаче сигналов. Мы уже упоминали о том, что необратимость и передача сигналов тесно свя­заны между собой. Норберт Винер убедительно показал, к каким ужасным последствиям привело бы существова­ние двух направлений времени. Следующий отрывок из знаменитой «Кибернетики» Винера заслуживает того, чтобы привести его:

«Очень интересный мысленный опыт — вообразить разумное существо, время которого течет в обратном на­правлении по отношению к нашему времени. Для тако­го существа никакая связь с нами не была бы возмож­на. Сигнал, который оно послало бы нам, дошел бы к нам в логическом потоке следствий — с его точки зре­ния — и причин — с нашей точки зрения. Эти причины уже содержались в нашем опыте и служили бы есте­ственным объяснением его сигналов без предположения о том, что разумное существо послало сигнал. Если бы оно нарисовало нам квадрат, остатки квадрата пред­ставились бы предвестником последнего и квадрат ка­зался бы любопытной кристаллизацией этих остатков, всегда вполне объяснимой. Его значение казалось бы столь же случайным, как те лица, которые представля­ются при созерцании гор и утесов. Рисование квадрата показалось бы катастрофической гибелью квадрата — внезапной, но объяснимой естественными законами. У этого существа были бы такие же представления о нас. Мы можем, сообщаться только с мирами, имею­щими такое же направление времени»9.

Именно энтропийный барьер гарантирует единствен­ность направления времени, невозможность изменить ход времени с одного направления на противополож­ное.

На страницах нашей книги мы неоднократно обраща-

367

ли внимание на важность доказательства несуществования. Эйнштейн первым осознал важность такого рода доказательства, положив в основу понятия относитель­ной одновременности невозможность передачи инфор­мации со скоростью, большей, чем скорость света. Вся теория относительности строится вокруг исключения «ненаблюдаемых» одновременностей. Эйнштейн усматри­вал в этом шаге аналогию с запретом вечного двигате­ля в термодинамике. Однако некоторые современники Эйнштейна, например Гейзенберг, указывали на важное различие между несуществованием вечного двигателя и невозможностью передачи сигналов со сверхсветовы­ми скоростями. В термодинамике речь идет об утверж­дении, что некоторая ситуация не встречается в природе; в теории относительности утверждается невозмож­ность некоторого наблюдения, т. е. своего рода диалога, коммуникации между природой и тем, кто ее описы­вает. Воздвигнув квантовую механику на основе запре­та всего, что квантовый принцип неопределенности оп­ределяет как ненаблюдаемое, Гейзенберг считал себя следующим примеру Эйнштейна, несмотря на скепти­цизм, с которым Эйнштейн встретил квантовую меха­нику.

До тех пор пока мы считали, что второе начало вы­ражает лишь практическую невероятность того или ино­го процесса, оно не представляло теоретического инте­реса. У нас всегда оставалась надежда, что, достаточно поднаторев в технике, нам все же удастся преодолеть запрет, налагаемый вторым началом. Но, как мы виде­ли, этим надеждам не суждено было сбыться. Корень всех «бед» — в отборе допустимых состояний. Лишь после того, как возможные состояния отобраны, всту­пает в силу вероятностная интерпретация Больцмана. Именно Больцман впервые установил, что возрастание энтропии соответствует возрастанию вероятности, бес­порядка. Но интерпретация Больцмана основывается на предпосылке, что энтропия есть принцип отбора, на­рушающий временную симметрию. Любая вероятност­ная интерпретация становится возможной лишь после того, как временная симметрия нарушена.

Несмотря на то что мы многое почерпнули из больцмановской интерпретации энтропии, наша интерпретация второго начала зиждется на совсем другой основе, поскольку мы имеем последовательность

368

второе начало как принцип отбора, приводящий к нарушению симметрии

?

вероятностная интерпретаци

?

необратимость как усиление беспорядка

Только объединение динамики и термодинамики с помощью введения нового принципа отбора придает второму началу фундаментальное значение эволюцион­ной парадигмы естественных наук. Этот пункт настолько важен, что мы остановимся на нем подробнее.

4. Эволюционная парадигма

Мир динамики, классической или квантовой, — мир обратимый. В гл. 8 мы уже отмечали, что в таком мире эволюция невозможна; «информация», представимая в динамических структурных единицах, остается постоян­ной. Тем большее значение имеет открывающаяся те­перь возможность установить эволюционную парадигму в физике, причем не только на макроскопическом, но и на всех уровнях описания. Разумеется, для этого необ­ходимы особые условия: мы видели, что сложность си­стемы должна превышать определенный порог. Впрочем, необычайная важность необратимых процессов свиде­тельствует о том, что большинство рассматриваемых нами систем удовлетворяет этому требованию. Приме­чательно, что восприятие ориентированного времени возрастает по мере того, как повышается уровень био­логической организации и достигает, по-видимому, куль­минационной точки в человеческом сознании.

Насколько велика общность этой эволюционной па­радигмы? Она охватывает изолированные системы, эволюционирующие к хаосу, и открытые системы, эво­люционирующие ко все более высоким формам слож­ности. Неудивительно, что метафора энтропии соблазни­ла авторов некоторых работ по социальным и экономи­ческим проблемам. Ясно, что, применяя естественно­научные понятия к социологии или экономике, необхо­димо соблюдать осторожность. Люди — не динамические объекты, и переход к термодинамике недопустимо фор­мулировать как принцип отбора, подкрепляемый дина­микой. На человеческом уровне необратимость обретает более глубокий смысл, который для нас неотделим от смысла нашего существования. С этой точки зрени

369

важно отметить, что во внутреннем ощущении необра­тимости мы не усматриваем более субъективное впечат­ление, отчуждающее нас от внешнего мира, а видим в нем своего рода отличительный признак нашего уча­стия в мире, находящемся во власти эволюционной па­радигмы.

Космологические проблемы известны своей необычай­ной трудностью. Мы до сих пор не знаем, какую роль играла гравитация на ранних этапах развития Вселен­ной. Возможна ли формулировка второго начала, вклю­чающая в себя гравитацию, или между термодинамикой и гравитацией существует своего рода диалектический баланс? Необратимость заведомо не могла бы появить­ся внезапно в мире с обратимым временем. Происхож­дение необратимости — проблема космологическая, и для решения ее необходимо проанализировать развитие Вселенной на ранних стадиях. Мы ставим перед собой более скромную задачу. Что означает необратимость сегодня? Как она связана с положением, которое мы за­нимаем в описываемом нами мире?

5. Актеры и зрители

Отрицание физикой становления породило глубокий раскол внутри самого естествознания и привело к от­чуждению его от философии. То, что первоначально бы­ло рискованной ставкой в духе господствовавшей ари­стотелевской традиции, со временем превратилось в дог­матическое утверждение, направленное против тех (хи­миков, биологов, медиков), для кого в природе сущест­вовало качественное многообразие. В конце XIX в. этот конфликт, протекавший внутри естествознания, был пе­ренесен на отношение между естествознанием и осталь­ной культурой, в особенности между естествознанием и философией. В гл. 3 мы рассказали об этом аспекте истории западноевропейской мысли с ее непрестанной борьбой за новое единство знания. «Живое» время, Lebenswelt (жизненный мир) представителей феномено­логии, противостоящий объективному времени физики, возможно, отвечали потребности возведения защитных сооружений, способных противостоять вторжению точ­ного естествознания.

Мы убеждены в том, что ныне эпоха безапелляцион­ных утверждений и взаимоисключающих позиций мино­вала. Физики не обладают более привилегией на экстер-

370

риториальность любого рода. Как ученые, они принадле­жат своей культуре и в свою очередь вносят немалый вклад в ее развитие. Мы достигли ситуации, близкой к той, которая была давно осознана в социологии. Еще Мерло-Понти подчеркивал необходимость не упускать из виду то, что он называл «истиной в длиной ситуации»:

«До тех пор пока мой идеал — абсолютный наблюда­тель, знание, безотносительное к какой бы то ни было точке зрения, моя ситуация является лишь источником ошибок. Но стоит лишь мне осознать, что через нее я связан со всеми действиями и всем знанием, имеющи­ми смысл для меня, и что она постепенно наполняется всем могущим иметь смысл для меня, и мой контакт с социальным в ограниченности моего бытия открывает­ся мне как исходный пункт всякой, в том числе и науч­ной, истины, а поскольку мы, находясь внутри истины и не имея возможности выбраться из нее наружу, имеем некоторое представление об истине, все, что я могу сделать, — это определить истину в рамках данной си­туации»10.

Именно этой концепции знания, объективного и дея­тельного, мы придерживались в нашей книге.

В своих «Темах»11 Мерло-Понти утверждал также, что «философские» открытия естествознания, концепту­альные преобразования его основ нередко происходят в результате негативных открытий, служащих толчком к пересмотру сложившихся взглядов и отправным пунк­том для перехода к противоположной точке зрения. До­казательства невозможности, или несуществования (будь то в теории относительности, квантовой механике или термодинамике), показали, что природу невозможно описывать «извне», с позиций зрителя. Описание при­роды — живой диалог, коммуникация, и она подчинена ограничениям, свидетельствующим о том, что мы — мак­роскопические существа, погруженные в реальный фи­зический мир.

Ситуацию, какой она представляется нам сегодня, можно условно изобразить в виде следующей диаг­раммы:

наблюдатель ® динамика

­

диссипативные структуры ?

­

необратимость ¬ случайность ¬ неустойчивые динамические системы

371

Мы начинаем с наблюдателя, измеряющего коорди­наты и импульсы и исследующего, как они изменяются во времени. В ходе своих измерений он совершает от­крытие: узнает о существовании неустойчивых систем и других явлений, связанных с внутренней случайностью и внутренней необратимостью, о которых мы говорили в гл. 9. Но от внутренней необратимости и энтропии мы переходим к диссипативным структурам в сильно неравновесных системах, что позволяет нам понять ориентированную во времени деятельность наблюдателя.

Не существует научной деятельности, которая не была бы ориентированной во времени. Подготовка экс­перимента требует проведения различия между «до» и «после». Распознать обратимое движение мы можем только потому, что нам известно о необратимости. Из нашей диаграммы видно, что, описав полный круг, мы вернулись в исходную точку и теперь видим себя как неотъемлемую часть того мира, который мы описываем.

Наша схема не априорна — она выводима из некото­рой логической структуры. Разумеется, в том, что в при­роде реально существуют диссипативные структуры, нет никакой логической необходимости. Однако непрелож­ный «космологический факт» состоит в следующем: для того чтобы макроскопический мир был миром обитае­мым, в котором живут «наблюдатели», т. е. живым миром, Вселенная должна находиться в сильно нерав­новесном состоянии. Таким образом, наша схема соот­ветствует не логической или эпистемологической истине, а относится к нашему состоянию макроскопических существ в сильно неравновесном мире. Наша схема об­ладает еще одной существенной отличительной особен­ностью: она не предполагает никакого фундаментально­го способа описания. Каждый уровень описания следует из какого-то уровня и в свою очередь влечет за собой другой уровень описания. Нам необходимо множество уровней описания, ни один из которых не изолирован от других, не претендует на превосходство над другими.

Мы уже отмечали, что необратимость — явление от­нюдь не универсальное. Эксперименты в условиях термо­динамического равновесия мы можем производить лишь в ограниченных областях пространства. Кроме того, зна­чимость временных масштабов варьируется в зависи­мости от объекта. Камень подвержен изменениям на от­резке времени масштаба геологической эволюции. Че-

372

ловеческие сообщества, особенно в наше время, имеют свои, существенно более короткие временные масштабы. Мы уже упоминали о том, что необратимость начинает­ся тогда, когда сложность эволюционирующей системы превосходит некий порог. Примечательно, что с увеличе­нием динамической сложности (от камня к человеческо­му обществу) роль стрелы времени, эволюционных рит­мов возрастает. Молекулярная биология показала, что внутри клетки все живет отнюдь не однообразно. Одни процессы достигают равновесия, другие, регулируемые ферментами, протекают в сильно неравновесных усло­виях. Аналогичным образом стрела времени играет в окружающем нас мире самые различные роли. С этой точки зрения (с учетом ориентации во времени всякой активности) человек занимает в мире совершенно ис­ключительное положение. Особенно важным, как уже говорилось в гл. 9, мы считаем то, что необратимость, или стрела времени, влечет за собой случайность. «Вре­мя — это конструкция». Значение этого вывода, к ко­торому независимо пришел Валери12, выходит за рамки собственно естествознания.

6. Вихрь в бурлящей природе

В нашем обществе с его широким спектром «позна­вательных технологий» науке отводится особое место. Наука — это поэтическое вопрошание природы в том смысле, что поэт выступает одновременно и как созида­тель, активно вмешивающийся в природу и исследую­щий ее. Современная наука научилась с уважением от­носиться к изучаемой ею природе. Из диалога с при­родой, начатого классической наукой, рассматривавшей природу как некий автомат, родился совершенно другой взгляд на исследование природы, в контексте которого активное вопрошание природы есть неотъемлемая часть ее внутренней активности.

В начале «Заключения» мы уже говорили о том, что существовавшее некогда ощущение интеллектуальной уверенности было поколеблено. Ныне мы располагаем всем необходимым для того, чтобы спокойно обсудить, как соотносятся между собой наука (естествознание) и философия. Мы уже упоминали о конфликте между Эйнштейном и Бергсоном. В некоторых сугубо физиче­ских вопросах Бергсон, несомненно, заблуждался, но

373

назад содержание далее



ПОИСК:




© FILOSOF.HISTORIC.RU 2001–2021
Все права на тексты книг принадлежат их авторам!

При копировании страниц проекта обязательно ставить ссылку:
'Электронная библиотека по философии - http://filosof.historic.ru'
Сайт создан при помощи Богданова В.В. (ТТИ ЮФУ в г.Таганроге)


Поможем с курсовой, контрольной, дипломной
1500+ квалифицированных специалистов готовы вам помочь