206______________КНИГА I. УЧЕНИЕ О БЫТИИ________________
однако оно также остается противоположным своему отрицанию. Вот почему этот прогресс равным образом есть не продолжение и продвижение, а повторение одного и того же, полагание, снятие, и снова полагание и снова снятие. Это — бессилие отрицания, к которому через само снятие отрицания снова возвращается как непрерывное то, что им было снято. Здесь два определения так связаны между собой, что они совершенно убегают друг от друга; и, убегая друг от друга, они не могут отделиться друг от друга, а остаются связанными в своем взаимном убегании.
Примечание 1 [Высокое мнение о бесконечном прогрессе]
Дурная бесконечность главным образом в форме прогресса количественного в бесконечном — этого постоянного перехода границы, который есть бессилие снять ее и постоянное возвращение в нее, — обычно считается чем-то возвышенным и некоторого рода служением Богу, равно как и в философии такой прогресс рассматривался как нечто последнее. Этот прогресс не раз служил поводом для триад, которыми восхищались как возвышенными произведениями. Но на самом деле эта модная возвышенность возвеличивает не самый предмет, который скорее ускользает, а только субъект, поглощающий в себя столь большие количества. Скудость этого остающегося субъективным восхождения по количественной лестнице сама себя обличает, признавая, что в своем тщетном труде оно не приближается к бесконечной цели, для достижения которой нужно, разумеется, взяться за дело совершенно иначе.
В приводимых нами ниже такого рода тирадах выражено в то же время и то, во что переходит и чем заканчивается такого рода восхождение. Кант, например, приводит как нечто возвышенное следующее (Кг. d. prakt. V. Schl.).
«Когда субъект в мысли возвышается над тем местом, которое он занимает в чувственном мире, и в необозримую даль расширяет связь со звездами и еще более далекими звездами, с мирами и еще более далекими мирами, с системами и еще более отдаленными системами, да и, кроме того, в безграничном времени их периодического движения, их начала и продолжительности, то представление не выдерживает этого движения в неизмеримую даль, где за самым отдаленным миром все еще есть более отдаленный, где прошлое, как бы далеко назад мы ни проследили его, все еще имеет более отдаленное прошлое, а будущее, как бы далеко мы его ни проследили вперед, все еще имеет впереди себя другое будущее; мысль не выдерживает этого представления о неизмеримом, подобно тому как кончается падением или головокружением сон, когда человеку снится, что он совершает длинный путь, идет все дальше и дальше, необозримо дальше,
и не видать конца» .
РАЗДЕЛ 2. ВЕЛИЧИНА (КОЛИЧЕСТВО)__________207
Это описание помимо того, что оно дает сжатое и вместе с тем богатое изображение содержания возвышения, вызываемого количественным бесконечным прогрессом, заслуживает похвалы особенно за ту правдивость, с которой оно указывает, чем кончается это возвышение: мысль изнемогает, и в итоге — падение и головокружение. Приводит же мысль к изнеможению, вызывает ее падение и головокружение не что иное, как скука от повторения, которое заставляет границу исчезать и снова появляться и снова исчезать, и так всегда одно из-за другого и одно в другом, в потустороннем — посюстороннее, в посюстороннем — потустороннее, постоянно возникать и исчезать, вызывая лишь чувство бессилия этого бесконечного или этого долженствования, которое хочет и не может справиться с конечным.
Описание вечности у Галлера, которое Кант назвал страшным, обычно вызывает особое восхищение, но часто как раз не за то, в чем состоит подлинная ценность описания. Галлер говорит:
Ich haufe ungeheure Zahlen,
Geburge Millionen auf,
Ich setze Zeit auf Zeit und Welt auf Welt zu Hauf,
Und wenn ich von der grausen Hoh'
Mil Schwindeln wieder nach dir seh',
1st alle Macht der Zahl, vermehrt zu tausendmalen,
Noch nicht em Teil von dir.
Ich zieh.' sie ab, und du liegst ganz vor mir .
Если этому нагромождению чисел и миров придается значение как описанию вечности, то упускают из виду, что сам поэт объявляет это так называемое страшное выхождение чем-то тщетным и пустым и что он кончает тем, что лишь благодаря отказу от этого пустого бесконечного прогресса предстает перед ним и становится наличным само истинное бесконечное.
Среди астрономов были такие, которые очень охотно похвалялись возвышенностью своей науки, поскольку астрономия имеет дело с неизмеримым множеством звезд, с неизмеримыми пространствами и временами, в которых расстояния и периоды, уже сами по себе столь огромные, служат единицами и которые, сколь бы многократно их ни брали, все же снова оказываются ничтожно малыми. Пустое удивление, которому они при этом предаются, вздорные надежды, что в загробной жизни они будут перекочевывать с одной звезды на другую и, странствуя так по неизмеримому пространству, будут приобретать все новые и новые сведения того же рода, — эти свои пустое удивление и вздорные надежды они выдавали за один из главных моментов превосходства своей науки. А между тем она достойна изумления не из-за такой количественной бесконечности, а, напротив, в силу тех отношений меры и законов, которые разум познает в этих
208______________КНИГА I. УЧЕНИЕ О БЫТИИ_____________
предметах и которые составляют разумное бесконечное в противоположность той неразумной бесконечности.
Бесконечности, имеющей отношение к внешнему чувственному созерцанию, Кант противопоставляет другую бесконечность, состоящую в том, что «индивид обращается к своему незримому „Я" и противопоставляет абсолютную свободу своей воли как некоторое чистое „Я" все ужасам судьбы и тирании; для него исчезают все окружающие его вещи, начиная с ближайших к нему, и рассыпается в прах то, что представляется прочным, миры за мирами, и он, одинокий, познает себя как равного самому себе» 91.
«Я» в этом одиночестве с собой есть, правда, достигнутое потустороннее; оно пришло к самому себе, находится у себя, по сю сторону; в чистом самосознании абсолютная отрицательность доведена до утверждения и наличия, которое в указанном выхождении за чувственное определенное количество лишь убегает. Но это чистое «Я», фиксируя себя в своей абстрактности и бессодержательности, имеет перед собой противоположное ему наличное бытие вообще, полноту природного и духовного универсума как некое потустороннее. Обнаруживается то же самое противоречие, которое лежит в основе бесконечного прогресса, а именно такое возвращение к себе, которое непосредственно есть в то же время вовне-себя-бытие, соотношение со своим иным как со своим небытием; это соотношение остается некоторой тоской, потому что «Я» фиксировало для себя, с одной стороны, свою бессодержательную и лишенную опоры пустоту, а с другой, как свое потустороннее, — полноту, все же остающуюся в отрицании наличной.
К своему изложению той и другой возвышенности Кант присовокупляет замечание, что «удивление (по отношению к первой, внешней) и уважение (ко второй, внутренней возвышенности), хотя и могут побуждать к изысканиям, но не могут их заменить». — Он, следовательно, объявляет эти взлеты не удовлетворительными для разума, который не может остановиться на них и связанных с ними чувствах и признавать потустороннее и пустое чем-то последним.
Но как нечто последнее бесконечный прогресс брали особенно в его применении к нравственности. Только что указанная вторая противоположность между конечным и бесконечным как противоположность между многообразным миром и поднявшимся к своей свободе «Я» носит прежде всего качественный характер. Самоопределение «Я» стремится в то же время к тому, чтобы определить природу и освободить себя от нее; таким образом, оно само через себя соотносится со своим иным, которое как внешнее наличное бытие есть нечто многообразное и тоже количественное. Соотношение с чем-то количественным само становится количественным: отрицательное соотношение «Я» с этим количе-
РАЗДЕЛ 2. ВЕЛИЧИНА (КОЛИЧЕСТВО)__________209
ственным, власть «Я» над «не-Я», над чувственностью и внешней природой, изображается поэтому так, что нравственность может и должна все более возрастать, а власть чувственности все более уменьшаться. Но полное соответствие воли с моральным законом переносится в идущий до бесконечности прогресс, т. е. изображается как абсолютно недостижимое потустороннее, и именно его недостижимость должна быть истинным пристанищем и подлинным утешением; ибо нравственность, говорят, есть борьба, а борьба возможна только при несоответствии воли с законом, и этот закон, следовательно, есть для нее всецело потустороннее.
В этом противоположении «Я» и «не-Я» или чистая воля и моральный закон, [с одной стороны], и природа и чувственность воли — [с другой ], предполагаются совершенно самостоятельными и безразличными друг к другу. Чистая воля имеет свой собственный закон, находящийся в сущностном соотношении с чувственностью, а природа и чувственность, со своей стороны, имеют законы, о которых нельзя сказать ни то, что они взяты у воли и соответствуют ей, ни даже то, что они хотя и отличаются от нее, все же заключают в себе сущностное соотношение с ней. Эти законы определены вообще сами по себе, они имеются в готовом виде и завершены внутри себя. Но в то же время они оба моменты одной и той же простой сущности, «Я»; воля определена как то, что отрицательно по отношению к природе, так что она имеется лишь постольку, поскольку существует нечто от нее отличное, что снимается ею, но что при снятии соприкасается с ней и даже воздействует на нее. Природе вообще и как чувственности человека — природе как самостоятельной системе законов, — ограничение неким иным безразлично; природа сохраняется в этом состоянии ограничения, вступает самостоятельно в соотношение [с волей] и в такой же мере ограничивает волю, руководящую [моральным ] законом, в какой она ограничивается ею. — В том же самом акте, в котором воля определяет себя и снимает инобытие некоей природы, это инобытие положено как наличное сущее, продолжающее существовать в состоянии своей снятости и, [стало быть], не снято. Заключающееся в этом противоречие не находит своего разрешения в бесконечном прогрессе, а, напротив, обнаруживается и утверждается как неразрешенное и неразрешимое; борьба между нравственностью и чувственностью изображается как в себе и для себя сущее, абсолютное отношение.
Бессилие справиться с качественной противоположностью между конечностью и бесконечностью и постигнуть идею истинной воли, субстанциальную свободу, ищет прибежища в величине, чтобы использовать ее как посредницу, так как она есть снятое качественное различие, ставшее безразличным. Однако так как в основании по-прежнему лежат оба члена противоположности как качественно различные, то скорее благодаря тому, что они
210 КНИГА I. УЧЕНИЕ О БЫТИИ
соотносятся как определенные количества, каждое из них сразу же положено безразличным к этому изменению. Природа определяется через «Я», чувственность — через воление добра; изменение, произведенное этим волением в чувственности, есть лишь количественное различие, такое различие, которое оставляет ее тем, что она есть.
В более абстрактном изложении кантовской философии или по крайней мере ее принципов, именно в наукоучении Фихте, бесконечный прогресс составляет точно так же основу и результат (das Letzte). За первым основоположением этого изложения, «Я» = «Я», следует второе независимое от первого основоположение, именно противоположение «не-Я»; и сразу же принимается, что соотношение их есть также количественное различие: отчасти «не-Я» определяется «Я», отчасти им не определяется. Таким образом, «не-Я» продолжает себя, переходя в свое небытие так, что оно в этом своем небытии остается противоположным как нечто неснятое. Поэтому, после того как заключающиеся здесь противоречия были развиты [Фихте] в [его] системе, конечным результатом оказалось то же отношение, которое служило отправным пунктом: «не-Я» остается бесконечным импульсом, абсолютно иным; последним соотношением «не-Я» и «Я» служит бесконечный прогресс, тоска и стремление — то же противоречие, с которого начали 92.
Так как количество — это определенность, положенная как снятая, то думали, что для единства абсолютного, для единой субстанциальности приобретают многое или, вернее, все, если противоположность вообще низвести до чисто количественного различия. Всякая противоположность только количественна — таково было в продолжение некоторого времени основное положение новейшей философии93; противоположные определения имеют одну и ту же сущность, одно и то же содержание, они реальные стороны противоположности, поскольку каждая из них имеет внутри себя оба определения противоположности, оба фактора, но только на одной стороне преобладает один фактор, а на другой — другой, на одной стороне один из факторов, некая материя или деятельность, имеется в большем количестве или в более сильной степени, чем на другой. Поскольку здесь предполагаются разные вещества или деятельности, количественное различие скорее подтверждает и завершает их внешность и безразличие друг к другу и к их единству. Различие в абсолютном единстве, утверждают, — только количественное, [между тем ], хотя количественное — это снятая непосредственная определенность, оно, однако, есть лишь несовершенное, лишь первое отрицание, а не бесконечное отрицание, не отрицание отрицания. — Так как бытие и мышление представляют себе [здесь] в виде количественных определений абсолютной субстанции, то и они как определенные количества становятся совершенно внешними,
РАЗДЕЛ 2. ВЕЛИЧИНА (КОЛИЧЕСТВО)__________211
друг для друга и не соотносящимися, так же как в низшей сфере углерод, азот и т. д. Только нечто третье, [а именно] внешняя рефлексия, отвлекается от их различия и познает их внутреннее, лишь в-себе-сущее, а не также для-себя-сущее, единство. Стало быть, на самом деле это единство представляют себе лишь как первое непосредственное единство или, иначе говоря, только как бытие, которое в своем количественном различии остается равным себе, но не полагает себя равным через само себя; оно, следовательно, не постигнуто как отрицание отрицания, как бесконечное единство. Только в качественной противоположности возникает положенная бесконечность, для-себя-бытие, и само количественное определение переходит, как это сейчас будет выяснено более подробно, в качественное.
Примечание 2
[Кантовская антиномия ограниченности и неограниченности мира во времени и пространстве]
Мы уже упомянули выше, что кантовские антиномии — это изложения противоположности конечного и бесконечного в более конкретном виде, в применении к более специальным субстратам представления. Рассмотренная там антиномия касалась противоположности между качественной конечностью и бесконечностью. В другой антиномии, а именно в первой из четырех космологических антиномий, рассматривается в большей мере количественная граница в ее противоречиях. Я поэтому подвергну здесь исследованию эту антиномию.
Она касается вопроса о том, ограничен ли или не ограничен мир во времени и пространстве. — Можно было бы с одинаковым успехом рассматривать эту противоположность и в отношении самих времени и пространства, ибо признаем ли мы, что время и пространство суть отношения самих вещей, или же признаем, что они лишь формы созерцания, — это ничего не меняет по отношению к антиномичности приписываемой им ограниченности или неограниченности.
Более подробный разбор этой антиномии покажет также, что оба положения, а равно и доказательства их, которые, как и рассмотренные выше, ведутся от противного, сводятся не к чему иному, как к двум следующим простым, противоположным утверждениям: граница существует и должно переступать границу.
Тезис гласит:
«Мир имеет начало во времени и ограничен также в пространстве».
Одна часть доказательства, та, которая касается времени, принимает противное:
«Допустим, что мир не имеет начала во времени, тогда до всякого данного момента времени протекла вечность и, стало
212______________КНИГА I. УЧЕНИЕ О БЫТИИ______________
быть, прошел бесконечный ряд следующих друг за другом состояний вещей в мире. Но бесконечность ряда именно в том и состоит, что он никогда не может быть закончен путем последовательного синтеза. Стало быть, бесконечный прошедший мировой ряд невозможен; значит, начало мира есть необходимое условие его существования, что и требовалось доказать» 94.
Другая часть доказательства, касающаяся пространства, сводится к времени. Синтез частей бесконечного в пространстве мира потребовал бы бесконечного времени, которое должно было бы рассматриваться как протекшее, поскольку мир в пространстве следует рассматривать не как нечто становящееся, а как завершенное данное. Но относительно времени показано в первой части доказательства, что невозможно принимать бесконечное протекшее время.
Однако сразу видно, что не было никакой нужды вести доказательство от противного или даже вообще вести доказательство, так как в нем лежит в основе то, что должно было быть доказано. А именно, в нем принимается некоторый или любой данный момент времени, до которого протекла вечность (вечность имеет здесь лишь ничтожный смысл некоторого дурно-бесконечного времени). Но данный момент времени означает не что иное, как некую определенную границу во времени. В доказательстве, следовательно, подразумевается граница времени как действительная. Но это и есть именно то, что должно было быть доказано. Ведь тезис состоит в том, что мир имеет начало во времени.
[Здесь] имеется лишь та разница, что допущенная граница времени есть некоторое «теперь» как конец протекшего до этого времени, а та граница, наличие которой требуется доказать, есть «теперь» как начало некоторого будущего. Но эта разница несущественна. «Теперь» принимается как точка, в которой прошел бесконечный ряд следующих друг за другом состояний вещей в мире, следовательно, как конец, как качественная граница. Если бы это «теперь» рассматривалось лишь как количественная граница, которая текуча и которую не только должно переступить, но которая скорее и состоит лишь в том, что она переступает самое себя, то оказалось бы, что бесконечный временной ряд в ней не прошел, а продолжает идти, и рассуждение доказательства отпало бы. Напротив, [в кантовском доказательстве ] момент времени принят как качественная граница для прошлого, но в то же время он начало для будущего, — ибо сам по себе каждый момент времени есть соотношение прошлого и будущего, — он равным образом есть абсолютное, т. е. абстрактное начало для будущего, т. е. то, что должно было быть доказано. Дело отнюдь не меняется от того, что до будущего указанного момента времени и до начала этого будущего имеется уже некоторое прошлое; так как этот момент времени есть качественная граница — а необходимость принимать его за качественную границу вытекает из
РАЗДЕЛ 2. ВЕЛИЧИНА (КОЛИЧЕСТВО)___________213
определения завершенного, протекшего, следовательно, не продолжающегося, — то время в нем прервано и это прошлое оказывается лишенным соотношения с тем временем, которое могло быть названо будущим лишь в отношении этого прошедшего и которое поэтому без такого соотношения есть лишь время вообще, имеющее абсолютное начало. Но если бы оно — как это в самом деле и есть — через «теперь», через данный момент времени находилось в соотношении с прошедшим, если бы оно, следовательно, было определено как будущее, то, с другой стороны, и этот момент времени не был бы границей, бесконечный временной ряд продолжался бы в том, что называлось будущим, и не был бы, как это приняло [доказательство], завершен.
' На самом деле время есть чистое количество; используемый в доказательстве «момент времени», в котором время якобы прерывается, есть скорее лишь снимающее себя для-себя-бытие самого «теперь». Доказательство делает лишь одно: утверждаемую тезисом абсолютную границу времени оно представляет как некий данный момент времени и прямо принимает, что он завершен, т. е. что он есть абстрактная точка; это — общепринятое определение, которое чувственное представление легко принимает за границу, вследствие чего в доказательстве признается как допущение то, что до этого было приведено как требующее доказательства.
Антитезис гласит:
«Мир не имеет начала [во времени] и границ в пространстве; он бесконечен и во времени, и в пространстве».
Доказательство антитезиса также исходит из допущения противного:
«Допустим, что мир имеет начало [во времени]. Так как начало есть существование, которому предшествует время, когда вещи не было, то когда-то должно было существовать время, в котором мира не было, т. е. пустое время. Но в пустом времени невозможно возникновение какой бы то ни было вещи, так как ни одна часть такого времени в сравнении с другой частью не заключает в себе условия существования, отличного от условия несуществования. Поэтому хотя некоторые ряды вещей и могут иметь начало в мире, но сам мир не может иметь начала и,
[следовательно], в отношении прошедшего времени бесконечен» 9S.
Это доказательство от противного, как и другие, прямо и бездоказательно утверждает то, что оно должно было доказать. А именно оно принимает сначала некое потустороннее наличного бытия мира, пустое время, но затем продолжает точно так же и наличное бытие мира, выводя его за его пределы в это пустое время, тем самым снимает это время и, следовательно, продолжает наличное бытие до бесконечности. Мир есть некоторое наличное бытие; доказательство подразумевает, что это наличное
214 КНИГА I. УЧЕНИЕ О БЫТИИ
бытие возникает и что возникновение имеет предшествующее [ему] во времени условие. Но сам антитезис в том именно и состоит, что нет никакого безусловного наличного бытия, никакой абсолютной границы и что наличное бытие мира всегда требует некоторого предшествующего условия. Стало быть, то, что подлежит доказательству, находится в доказательстве как допущение. — Далее, доказательство ищет затем условия в пустом времени, а это означает, что условие принимается как имеющее временной характер и, следовательно, как наличное бытие и как нечто ограниченное. Стало быть, вообще принимается, что мир как наличное бытие предполагает другое обусловленное наличное бытие во времени и т. д. до бесконечности.
Доказательство бесконечности мира в пространстве таково же. В виде доказательства от противного принимается пространственная конечность мира: «В таком случае он находится в пустом неограниченном пространстве и имел бы некоторое отношение к нему; но такое отношение мира к несуществующему предмету есть ничто» 9б.
И здесь в доказательстве прямо берется в качестве предпосылки то, что требуется доказать. [Здесь] прямо принимается, что ограниченный пространственный мир находится в пустом пространстве и имеет к нему некоторое отношение, т. е. что, с одной стороны, необходимо выходить за пределы этого мира, в пустоту, в потустороннее мира и небытие этого мира, но, с другой стороны, этот мир находится в отношении с пустым пространством, т. е. имеет в нем продолжение, и, следовательно, должно представлять себе потустороннее как наполненное наличное бытие мира. Бесконечность мира в пространстве, провозглашаемая антитезисом, есть не что иное, как, с одной стороны, пустое пространство и, с другой, отношение мира к нему, т. е. продолжение мира в нем, наполнение его. Это противоречие — предположение, что пространство одновременно и пусто и наполнено, — есть бесконечный прогресс наличного бытия в пространстве. Само это противоречие, отношение мира к пустому пространству, прямо кладется в основу доказательства.
Поэтому тезис и антитезис и доказательства их не что иное, как противоположные утверждения, что имеется некоторая граница и что она вместе с тем лишь снятая граница; что граница имеет нечто потустороннее, с чем, однако, она находится в соотношении и куда необходимо выходить, переступая ее, но где снова возникает такая граница, которая не есть граница.
Разрешение этих антиномий, как и предыдущих, трансцендентально, т. е. оно состоит в утверждении, что пространство и время как формы созерцания идеальны в том смысле, что мир в самом себе не находится в противоречии с собой, не снимает себя; лишь сознание в своем созерцании и в соотношении созерцания с рассудком и разумом есть противоречащая самой себе
РАЗДЕЛ 2. ВЕЛИЧИНА (КОЛИЧЕСТВО)__________215
сущность Это слишком большая нежность по отношению к миру — удалить из него противоречие, перенести, напротив, это противоречие в дух, в разум и оставить его там неразрешенным. В самом же деле дух столь силен, что может переносить противоречие,
о он же и умеет разрешать его. Это, однако, вовсе не значит, что так называемый мир (как бы его ни именовали — объективным ли реальным миром или, согласно трансцендентальному идеализму субъективным созерцанием и чувственностью, определяемой категориями рассудка) свободен хоть где-нибудь от противоречия, но он не в состоянии выносить его и потому подвержен возникновению и прехождению.
с) Бесконечность определенного количества (Die Unendlichkeit des Quantum)
1. Бесконечное определенное количество как бесконечно большое или бесконечно малое само есть в себе бесконечный прогресс; оно определенное количество как некоторое большое или малое и в то же время небытие определенного количества. Бесконечно большое и бесконечно малое суть поэтому образы представления, которые при более внимательном рассмотрении оказываются ничтожным туманом и тенью. Но в бесконечном прогрессе это противоречие имеется в ясном виде, и тем самым имеется в ясном виде то, что составляет природу определенного количества, которое достигло своей реальности как интенсивная величина и теперь положено в своем наличном бытии таким, каково оно в своем понятии. Это тождество мы теперь и должны рассмотреть.
Определенное количество как градус просто, оно соотнесено с собой и определено как [находящееся] в самом себе. Так как благодаря этой простоте инобытие и определенность сняты в нем, то определенность внешняя ему; оно имеет свою определенность вовне себя. Это его вовне-себя-бытие есть прежде всего абстрактное небытие определенного количества вообще, дурная бесконечность. Но это небытие обладает, далее, и некоторой величиной; определенное количество непрерывно переходит в свое небытие, ибо имеет свою определенность как раз в своей внешности; эта его внешность точно так же есть поэтому определенное количество; таким образом, указанное его небытие, бесконечность, ограничивается, т. е. потустороннее снимается, оно само определено как определенное количество, которое, следовательно, в своем отрицании находится у самого себя.
Но это как раз то, что определенное количество, как таковое, есть в себе. Ибо оно есть оно же само благодаря своему вовне-себя-бытию; внешность составляет то, благодаря чему оно определенное количество, находится у себя. Следовательно, в бесконечном прогрессе понятие определенного количества положено.
216 КНИГА I. УЧЕНИЕ О БЫТИИ
Если мы возьмем бесконечный прогресс сначала в его абстрактных определениях, как они представлены нам, то увидим, что в нем снято определенное количество, но снято также его потустороннее, имеется, следовательно, и отрицание определенного количества, и отрицание этого отрицания. Его истина — это их единство, в котором они даны, однако, как моменты. — Это единство есть разрешение противоречия, выражением которого служит бесконечный прогресс; поэтому ближайший смысл единства — восстановление понятия величины, заключающегося в том, что она безразличная или внешняя граница. Когда говорят о бесконечном прогрессе, как таковом, то обычно обращают внимание только на то, что каждое определенное количество, как бы оно ни было велико или мало, может исчезать, что должна быть возможность выходить за его пределы, но не на то, что само это его снятие, потустороннее, дурная бесконечность, также исчезает.
Уже первое снятие, отрицание качества вообще, благодаря которому полагается определенное количество, есть в себе снятие отрицания, — определенное количество есть снятая качественная граница, следовательно, снятое отрицание, — но в то же время оно таково лишь в себе', положено же оно как наличное бытие, а затем его отрицание фиксировано как бесконечное, как потустороннее определенного количества, которое остается по сю сторону как нечто непосредственное; таким образом, бесконечное определено лишь как первое отрицание, и таковым оно выступает в бесконечном прогрессе. Но мы уже показали, что в бесконечном прогрессе имеется нечто большее, имеется отрицание отрицания, или то, что бесконечное есть поистине. Ранее мы это рассматривали так, что тем самым восстановлено понятие определенного количества; это восстановление означает прежде всего, что его наличное бытие получило свое более точное определение, а именно возникло определенное количество, определенное в соответствии со своим понятием и отличное от непосредственного определенного количества; внешность есть теперь противоположность самой себе, положена как момент самой величины, — возникло определенное количество, взятое так, что оно посредством своего небытия, бесконечности, имеет свою определенность в другом определенном количестве, т. е. есть качественно то, что оно есть. Однако это сравнение понятия определенного количества с его наличным бытием свойственно больше нашей рефлексии — отношению, которого здесь еще нет. Ближайшее определение таково: определенное количество возвращено к качеству, определено отныне качественно. Ибо его особенность, его качество — это внешность, безразличие определенности, и оно теперь положено как то, что в своей внешности есть скорее оно же само, соотносится в ней с самим собой, определено в простом единстве с собой, т. е. качественно. — Это качественное определено еще более точно, а именно как для-себя-бытие, ибо соотношение с самим собой, к которому
РАЗДЕЛ 2. ВЕЛИЧИНА (КОЛИЧЕСТВО)__________217
оно пришло, появилось из опосредствования, из отрицания отрицания. Определенное количество имеет бесконечность, для-себя-определенность уже не вовне себя, а в самом себе.
Бесконечное, имеющее в бесконечном прогрессе лишь ничтожное значение небытия, недостигнутого, но искомого потустороннего, есть на самом деле не что иное, как качество. Определенное количество как безразличная граница переступает само себя в бесконечность; тем самым оно не ищет ничего иного, кроме для-себя-определенности, качественного момента, который, однако, таким образом есть лишь долженствование. Его безразличие к границе, следовательно, отсутствие у него для-себя-сущей определенности и его выхождение за само себя есть то, что делает определенное количество определенным количеством; это его выхождение должно подвергнуться отрицанию и найти себе в бесконечном свою абсолютную определенность.
В самом общем виде: определенное количество — это само снятое качество; но определенное количество бесконечно, выходит за свои пределы, оно отрицание себя; это его выхождение есть, следовательно, в себе отрицание подвергнутого отрицанию качества, восстановление его; и положено именно то, что внешность, выступавшая как потустороннее, определена как собственный момент определенного количества.
Определенное количество этим положено как оттолкнутое от себя, вследствие чего, стало быть, имеются два определенных количества, которые, однако, сняты, даны лишь как моменты одного единства, и это единство есть определенность определенного количества. — Последнее, соотнесенное, таким образом, в своей внешности с собой как безразличная граница и, следовательно, положенное качественно, есть количественное отношение. — В самом отношении определенное количество внешне себе, отлично от самого себя; эта его внешность есть соотношение одного определенного количества с другим определенным количеством, каждое из которых значимо лишь в этом своем соотношении со своим иным; и это соотношение составляет определенность определенного количества, данного как такое единство. Определенное количество имеет в нем не безразличное, а качественное определение, в этой своей внешности возвратилось в себя, есть в ней то, что оно есть.
Примечание 1 Определенность понятия математического бесконечного
Математическое бесконечное интересно, с одной стороны, виду расширения [сферы] математики и ввиду великих результатов, достигнутых благодаря введению его в математику; с другой же стороны, оно достойно внимания по той причине, что этой науке еще не Удалось посредством понятия (понятия в собственном смысле) обосновать правомерность его применения.
218______________КНИГА I. УЧЕНИЕ О БЫТИИ_____________
Все обоснования зиждутся в конечном счете на правильности результатов, получающихся при помощи этого определения, правильности, доказанной из других оснований, но не на ясности предмета и действий, благодаря которым достигнуты эти результаты; более того: признается даже, что сами эти действия неправильны.
Это уже само по себе недостаток; такой образ действия ненаучен. Но он влечет за собой еще и тот вред, что математика, не зная природы этого своего орудия из-за того, что не справилась с его метафизикой и критикой, не могла определить сферу его применения и предохранить себя от злоупотребления им.
В философском же отношении математическое бесконечное важно потому, что в его основе действительно лежит понятие истинного бесконечного и оно куда выше, чем обычно называемое так метафизическое бесконечное, исходя из которого выдвигаются против него возражения. От этих возражений математическая наука часто умеет спасаться лишь тем, что она отвергает компетенцию метафизики, утверждая, что ей нет дела до этой науки, что ей нечего заботиться о ее понятиях, если только она действует последовательно на своей собственной почве. Она-де должна рассматривать не то, что истинно в себе, а то, что истинно в ее области. При всех своих возражениях против математического бесконечного метафизика не может отрицать или опровергнуть блестящие результаты, которые дало его применение, а математика не в состоянии точно выяснить метафизику своего собственного понятия, а потому не в состоянии также и дать основание (Ableitung) тех приемов, которые делает необходимыми применение бесконечного.
Если бы над математикой тяготело одно лишь затруднение, причиняемое понятием вообще, то она могла бы без околичностей оставить его в стороне, поскольку именно понятие есть нечто большее, чем только указание сущностных определенностей, т. е. рассудочных определений той или иной вещи, а упрекнуть математику в недостаточной строгости этих определенностей никак нельзя; [она могла бы оставить в стороне это затруднение], ибо не принадлежит к тем наукам, которые должны иметь дело с понятиями своих предметов и образовать свое содержание через развитие понятия, хотя бы только путем резонерства. Но применяя метод своего бесконечного, она находит главное противоречие в самом характерном для нее методе, на котором она вообще основывается как наука. Ибо исчисление бесконечного разрешает и требует таких приемов, которые она должна отвергать, оперируя конечными величинами, и в то же время она обращается со своими бесконечными величинами как с конечными определенными количествами и хочет применять к первым те же приемы, которые применяются к последним. Очень важно для развити
РАЗДЕЛ 2. ВЕЛИЧИНА (КОЛИЧЕСТВО)______ 219
этой науки то, что она нашла для трансцендентных определений и действий над ними форму обычного исчисления (Kalkuls).
При всей этой противоречивости своих действий математика показывает, что результаты, которые она получает посредством их вполне совпадают с теми, которые она получает с помощью собственно математического метода, геометрического и аналитического метода. Однако, с одной стороны, это касается не всех результатов, и цель введения [математического] бесконечного не только сокращение обычного пути, а достижение результатов, которых последний дать не может. С другой же стороны, успех сам по себе не может служить оправданием характера пути (die Manier des Wegs). А этот характер исчисления бесконечного отягощен видимостью неточности, которую он сам себе придает, увеличивая конечные величины на бесконечно малую величину и отчасти сохраняя эту последнюю в дальнейших действиях, отчасти же и пренебрегая ею. Этот прием заключает в себе ту странность, что, несмотря на признаваемую неточность, получается результат, который не только довольно точен и столь близок [к истинному результату], что можно не обращать внимания на разницу, но и совершенно точен. В самом же действии, предшествующем результату, нельзя обойтись без представления, что некоторые величины не равны нулю, но они столь незначительны, что их можно оставить без внимания. Однако в том, что понимают под математической определенностью, совершенно отпадает всякое различие между большей или меньшей точностью, подобно тому как в философии может идти речь не о большей или меньшей вероятности, а единственно лишь об истине. Если метод и применение бесконечного и находят оправдание в успехе, то все же требовать их обоснования не так излишне, как представляется излишним, например, требование доказать право пользоваться собственным носом . Ведь в математическом познании как познании научном существенное значение имеет доказательство, а в отношении получаемых результатов также оказывается, что строго математический метод не для всех их доставляет аргумент успеха, который к тому же есть лишь внешний аргумент.
Стоит рассмотреть более внимательно математическое понятие бесконечного и наиболее замечательные попытки, которые ставят себе целью найти оправдание в пользовании им и устранить затруднение, отягчающее метод. Рассмотрение таких оправданий и определений математического бесконечного, которые я намерен изложить в этом примечании более пространно, бросит в то же время наиболее яркий свет и на самое природу истинного понятия и покажет как оно представлялось и легло в основу этих попыток.
Обычное определение математического бесконечного гласит, то оно есть величина, больше которой, если она определена как бесконечно большая, или меньше которой, если она определена к бесконечно малая, уже нет или — в другой формулировке —
220______________КНИГА I. УЧЕНИЕ О БЫТИИ___________
как величина, которая в первом случае больше, а во втором меньше любой другой величины. — В этой дефиниции выражено, конечно, не истинное понятие, а скорее, как уже отмечено, лишь то же противоречие, что и в бесконечном прогрессе. Но посмотрим что содержится в ней в себе. Величина определяется в математике как то, что может быть увеличено или уменьшено, следовательно, вообще как безразличная граница. И вот, так как бесконечно большое или бесконечно малое есть нечто такое, что уже больше не может быть увеличено или уменьшено, то оно на самом деле уже не определенное количество, как таковое.
Этот вывод необходим и непосредствен. Но именно это соображение, что определенное количество, — а я называю в этом примечании определенным количеством вообще то, что оно есть, [а именно ] конечное определенное количество, — снято, обычно не приходит на ум, а между тем оно-то и составляет затруднение для обыденного понимания, так как требуется, чтобы определенное количество, когда оно бесконечно, мыслилось как нечто снятое, как нечто такое, что не есть определенное количество, но количественная определенность чего все же сохраняется.
Если обратимся к тому, как относится к этому определению Кант *, то увидим, что он его находит несогласующимся с тем, что понимают под бесконечным целым. «Согласно обыденному понятию бесконечна та величина, больше которой (т. е. больше определенного множества содержащихся в ней данных единиц) невозможна никакая другая величина. Но никакое множество не может быть наибольшим, так как ко всякому множеству можно прибавить еще одну или несколько единиц. Бесконечное целое не дает нам представления о том, как оно велико, стало быть, понятие его не есть понятие максимума (или минимума): посредством него мыслится только его отношение к любой полагаемой единице, для которой бесконечное целое больше всякого числа. В зависимости от того, взяли ли мы большую или меньшую единицу, бесконечное было бы большим или меньшим, но бесконечность, так как она состоит лишь в отношении к этой данной единице, оставалась бы одной и той же, хотя, конечно, абсолютная величина целого вовсе не была бы таким образом познана» 98.
Кант отвергает признание бесконечного целого некоторым максимумом, завершенным множеством данных единиц. Максимум или минимум, как таковой, все еще представляется определенным количеством, множеством. Таким представлением не может быть отклонено указанное Кантом заключение, которое приводит к большему или меньшему бесконечному. Вообще, когда бесконечное представляют как определенное количество, для него
* В примечании к тезису первой космологической антиномии в «Критике
РАЗДЕЛ 2. ВЕЛИЧИНА (КОЛИЧЕСТВО)__________221
сохраняет значение различие большего или меньшего. Но эта критика не затрагивает понятия истинного математического бесконечного, бесконечной разности, ибо последняя уже не конечное определенное количество.
Напротив, даваемое Кантом понятие бесконечности, которое он называет истинно трансцендентальным, гласит, что «последовательный синтез единицы при измерении определенного количества никогда не может быть закончен»99. В этом понятии подразумевается, как данное, определенное количество вообще; требуется, чтобы оно посредством синтеза единицы стало некоторой численностью, определенным количеством, которое следует точно указать, но, [по утверждению Канта], невозможно когда-либо закончить такой синтез. Этим совершенно очевидно выражено не что иное, как бесконечный прогресс, только представляют себе его здесь трансцендентально, т. е., собственно говоря, субъективно и психологически. Само по себе, дескать, определенное количество, правда, завершено, но трансцендентальным образом, а именно в субъекте, сообщающем ему отношение к некоторой единице, возникает лишь такое определение определенного количества, которое не завершено и всецело обременено потусторонним. Следовательно, здесь вообще не идут дальше противоречия, которое содержится в величине, но которое распределено между объектом и субъектом, так что на долю первого выпадает ограниченность, а на долю второго — выхождение за каждую постигаемую им определенность, в дурное бесконечное.
Выше же было сказано, что определение математического бесконечного и притом так, как им пользуются в высшем анализе, соответствует понятию истинного бесконечного; теперь следует сопоставить эти два определения в более развернутом виде. — Что касается прежде всего истинно бесконечного определенного количества, то оно определилось как в самом себе бесконечное; оно таково, поскольку, как мы выяснили, и конечное определенное количество или определенное количество вообще, и его потустороннее — дурное бесконечное — одинаково сняты. Снятое определенное количество возвратилось тем самым к простоте и к соотношению с самим собой, но не только так, как экстенсивное определенное количество, переходившее в интенсивное определенное количество, которое имеет свою определенность в каком-то внешнем многообразии лишь в себе, однако, как полагают, безразлично к этому многообразию и отлично от него. Бесконечное определенное количество скорее содержит, во-первых, внешность и, во-вторых, ее отрицание в самом себе. В этом случае оно уже не конечное определенное количество, не определенность величины, которая имела бы наличное бытие как определенное количество, оно нечто простое и потому дано лишь как момент; оно определенность величины в качественной форме; его бесконечность состоит в том, что оно дано как некоторая качественна
222______________КНИГА I. УЧЕНИЕ О БЫТИИ_____________
определенность. — Таким образом, как момент оно находится в сущностном единстве со своим иным, дано лишь как определенное этим своим иным, т. е. оно имеет значение лишь в связи с чем-то находящимся с ним в отношении. Вне этого отношения оно нуль, между тем именно определенное количество, как таковое, безразлично, как полагают, к отношению, хотя оно и есть в нем непосредственное неподвижное определение. В отношении оно только как момент не есть нечто само по себе безразличное; в бесконечности как для-себя-бытии оно, будучи в то же время некоторой количественной определенностью, дано лишь как некоторое «для-одного».
Понятие бесконечного, как оно здесь изложено абстрактно, окажется лежащим в основе математического бесконечного, и оно само станет более ясным, когда рассмотрим различные ступени выражения определенного количества как момента отношения, начиная с низшей ступени, на которой оно еще есть также определенное количество, как таковое, и кончая высшей, где оно приобретает значение и выражение бесконечной величины в собственном смысле.
Итак, возьмем сначала определенное количество в том отношении, в котором оно дробное число. Такая дробь, например, 2/7 не есть такое определенное количество, как 1, 2, 3 и т. д.; она, правда, обычное конечное число, однако не непосредственное, как целые числа, а как дробь опосредствованно определенное двумя другими числами, которые суть в отношении друг друга численность и единица, причем и единица есть некоторая численность. Но взятые абстрагированно от этого их более точного определения относительно друг друга и рассматриваемые лишь в соответствии с тем, что в качественном соотношении, в котором они здесь находятся, происходит с ними как с определенными количествами, 2 и 7 помимо этого соотношения суть безразличные определенные количества; но выступая здесь как моменты друг друга и тем самым некоторого третьего (того определенного количества, которое называется показателем), они имеют значение не как 2 и 7, а лишь со стороны их определенности относительно друг друга. Поэтому можно вместо них с таким же успехом поставить также 4 и 14 или 6 и 21 и т. д. до бесконечности. Тем самым они, следовательно, начинают приобретать качественный характер. Если бы 2 и 7 имели значение только как определенные количества, то одно было бы просто 2, а другое 7; 4, 14, 6, 21 и т. д. — нечто совершенно иное, чем эти числа, и, поскольку они лишь непосредственные определенные количества, одни из них не могут быть подставлены вместо других. Но поскольку 2 и 7 имеют значение не со стороны той определенности, что они такие определенные количества, их безразличная граница снята; они, стало быть, с этой стороны заключают в себе момент бесконечности, ибо они не только уже не то, что они суть, но
РАЗДЕЛ 2. ВЕЛИЧИНА (КОЛИЧЕСТВО)__________223
сохраняется их количественная определенность, однако как в себе сущая качественная определенность, а именно согласно тому, то они значат в отношении. Они могут быть заменены бесконечным множеством других чисел, так что определенность отношения не изменяет величину дроби.
Но изображение бесконечности в числовой дроби несовершенно еще и потому, что оба члена дроби, 2 и 7, могут быть изъяты из отношения, и тогда они обыкновенные безразличные определенные количества; их соотношение — то, что они суть члены отношения и моменты, — есть для них нечто внешнее и безразличное. И точно так же само их соотношение есть обычное определенное количество, показатель отношения.
Буквы, которыми оперируют в общей арифметике, т. е. ближайшая всеобщность, в которую возводятся числа, не обладают свойством иметь определенную числовую величину; они лишь всеобщие знаки и неопределенные возможности любой определенной величины. Дробь a/b представляется поэтому более подходящим выражением бесконечного, так как а и ft, изъятые из их соотношения, остаются неопределенными и не имеют особой им принадлежащей величины, даже будучи отделены друг от друга. — Однако, хотя эти буквы положены как неопределенные величины, их смысл все же состоит в том, что они какое-то конечное определенное количество. Так как они хотя и всеобщее представление, но лишь об определенном числе, то для них одинаково безразлично то, что они находятся в отношении, и вне этого отношения они сохраняют то же самое значение.
Если присмотримся еще пристальнее к тому, что имеется в отношении, то увидим, что ему присущи оба определения: оно, во-первых, определенное количество, но последнее есть, во-вторых, не непосредственное определенное количество, а такое, которое содержит качественную противоположность; в то же время оно остается в отношении тем определенным, безразличным квантом благодаря тому, что оно возвращается в себя из своего инобытия, из противоположности и, следовательно, есть также нечто бесконечное. Эти два определения, развитые в их отличии друг от друга, представляются в следующей общеизвестной форме.
Дробь - может быть выражена как 0,285714..., -----как
1 — а
1+ а + а + а3 и т. д. Таким образом, она дана как бесконечный ряд; сама дробь называется суммой или конечным выражением этого ряда. Если сравним между собой эти два выражения, то окажется, что одно, бесконечный ряд, представляет ее уже не как отношение, а с той стороны, что она определенное количество как множество таких количеств, которые присоединяются одно Другому, — как некоторая численность. — Что величины, кото-
224______________КНИГА I. УЧЕНИЕ О БЫТИИ____________
рые должны составить дробь как некую численность, сами в свою очередь состоят из десятичных дробей, стало быть, сами состоят из отношений, — это не имеет здесь значения; ибо это обстоятельство касается особого рода единицы этих величин, а не их поскольку они конституируют численность; ведь и состоящее из нескольких цифр целое число десятеричной системы также считается по своей сути численностью, и не обращается внимания на то, что она состоит из произведений некоторых чисел на число десять и его степени. Не важно здесь и то, что имеются другие
дроби, нежели взятая в качестве примера дробь 2/7, которые,
будучи обращены в десятичные дроби, не дают бесконечного ряда; однако каждая из них может быть изображена как такой ряд в числовой системе другой единицы.
Так как в бесконечном ряде, который должен представлять дробь как численность, исчезает та ее сторона, что она отношение, то исчезает и та сторона, что она, как показано выше, в самой себе имеет бесконечность. Но эта бесконечность вошла другим способом, а именно сам ряд бесконечен.
Какова эта бесконечность ряда — это явствует само собой; она дурная бесконечность прогресса. Ряд содержит и представляет следующее противоречие: нечто, будучи отношением и имея внутри себя качественную природу, изображается как лишенное отношений, просто как определенное количество, как численность. Следствием этого [противоречия] оказывается то, что в численности, выражаемой в ряде, всегда чего-то недостает, так что для того, чтобы достигнуть требуемой определенности, всегда нужно выходить за пределы того, что положено. Закон этого продвижения известен; он заключается в определении определенного количества, содержащемся в дроби, и в природе формы, в которой это определение должно быть выражено. Можно, правда, продолжая ряд, сделать численность столь точной, сколь это нужно. Однако изображение [численности ] посредством ряда всегда остается лишь долженствованием; оно обременено неким поту-сторонним, которое не может быть снято, так как попытка выразить в виде численности то, что основано на качественной определенности, есть постоянное противоречие.
В этом бесконечном ряде действительно имеется та неточность, которая в истинном математическом бесконечном встречается лишь как видимость. Не следует смешивать эти два вида математического бесконечного, точно так же как не следует смешивать оба вида философского бесконечного. Для изображения истинного математического бесконечного сначала пользовались формой ряда, и в новейшее время она опять была вызвана к жизни. Но она для него не необходима. Напротив, как станет ясно из последующего, бесконечное бесконечного ряда сущностно отлича-
РАЗДЕЛ 2. ВЕЛИЧИНА (КОЛИЧЕСТВО)__________225
ется от истинного математического бесконечного. Скорее он уступает [в этом отношении] даже такому выражению, как дробь. А именно бесконечный ряд содержит дурную бесконечность, к как то, что он должен выразить, остается долженствованием, а то что он выражает, обременено неисчезающим потусторонним и отличается от того, что должно быть выражено. Он бесконечен не из-за положенных членов, а потому, что они неполны, потому что иное, сущностно принадлежащее к ним, находится по ту сторону их; то, что в нем есть, хотя бы положенных членов было сколь угодно много, есть лишь конечное в собственном смысле этого слова, положенное как конечное, т. е. как такое, что не есть то, чем оно должно быть. Напротив, то, что называется конечным выражением или суммой такого ряда, безупречно; оно полностью содержит то значение, которого ряд только ищет; потустороннее возвращено из своего бегства; то, что этот ряд есть, и то, чем он должен быть, уже не разделено, а есть одно и то же.
Различает их, если говорить точнее, то, что в бесконечном ряде отрицательное находится вне его членов, которые имеются налицо, так как они признаются лишь частями численности. Напротив, в конечном выражении, которое есть отношение, отрицательное имманентно как определяемость сторон отношения друг другом, которая есть возвращение в себя, соотносящееся с собой единство как отрицание отрицания (обе стороны отношения даны лишь как моменты), и, следовательно, имеет внутри себя определение бесконечности. — Таким образом, обычно так называемая сумма,2/7 или1/1-а есть на самом деле отношение, и это так называемое конечное выражение есть истинно бесконечное выражение. Бесконечный ряд есть на самом деле скорее сумма; его цель — то, что в себе есть отношение, представить в форме некоторой суммы, и имеющиеся налицо члены ряда даны не как члены отношения, а как члены агрегата. Он, далее, есть скорее конечное выражение, ибо он несовершенный агрегат и остается по своему существу чем-то недостаточным. По тому, что в нем имеется, он определенный квант, но в то же время меньший, чем тот, которым он должен быть; и то, чего ему недостает, также есть определенный квант; эта недостающая часть есть на самом деле то, что называется в ряде бесконечным только с той формальной стороны, что она есть нечто недостающее, некоторое небытие; по своему содержанию она конечное определенное количество. Только то, что налично в ряде, совокупно с тем, чего ему недостает, составляет дробь, определенный квант, которым ряд также должен быть, но которым он не в состоянии быть. — Слово «бесконечное» также и в сочетании «бесконечный ряд» обычно кажется мнению чем-то возвышенным и величественным;
Гегель
226______________КНИГА I. УЧЕНИЕ О БЫТИИ_____________
это некоторого рода суеверие, суеверие рассудка. Мы видели, что оно сводится скорее к определению недостаточности.
Можно еще заметить, что то, что имеются такие бесконечные ряды, которые не суммируются, — это в отношении формы ряда вообще обстоятельство внешнее и случайное. Ряды эти содержат более высокий вид бесконечности, чем суммирующиеся ряды, а именно несоизмеримость, или, иначе говоря, невозможность представить содержащееся в них количественное отношение как определенное количество, хотя бы в виде дроби. Но свойственная им форма ряда, как таковая, содержит то же самое определение дурной бесконечности, какое присуще суммирующемуся ряду.
Только что указанная на примере дроби и ее ряда превратность выражения имеет место и тогда, когда математическое бесконечное — а именно не только что названное, а истинное — называют относительным бесконечным, обычное же метафизическое, под которым разумеют абстрактное, дурное бесконечное, — абсолютным. На самом же деле это метафизическое бесконечное скорее лишь относительно, ибо выражаемое им отрицание противоположно границе лишь в том смысле, что граница остается существовать вне него и не снимается им; математическое же бесконечное действительно сняло конечную границу внутри себя, так как ее потустороннее соединено с ней.
Спиноза выставляет и поясняет примерами понятие истинной бесконечности в противоположность дурной главным образом в том смысле, в котором мы показали, что так называемая сумма или конечное выражение бесконечного рада следует рассматривать скорее как бесконечное выражение. Понятие истинной бесконечности будет лучше всего освещено, если я рассмотрю сказанное им об этом предмете непосредственно вслед за только что изложенными соображениями.
Спиноза определяет прежде всего бесконечное как абсолютное утверждение существования какой-нибудь природы, а конечное, напротив, как определенность, как отрицание. Абсолютное утверждение некоторого существования следует понимать именно как его соотношение с самим собой, означающее, что оно есть не потому, что другое есть; конечное же есть отрицание, есть прекращение как соотношение с некоторым иным, начинающимся вне его. Абсолютное утверждение некоторого существования, правда, не исчерпывает понятия бесконечности; это понятие подразумевает, что бесконечность есть утверждение не как непосредственное, а только как восстановление через рефлексию иного в само себя, или, иначе говоря, как отрицание отрицательного. Но у Спинозы субстанция и ее абсолютное единство имеют форму неподвижного единства, т. е. не опосредствующего себя с самим собой, — форму какой-то оцепенелости, в которой еще не находится понятие отрицательного единства самости, субъективность.
РАЗДЕЛ2.ВЕЛИЧИНА(КОЛИЧЕСТВО) 227
В качестве математического примера для пояснения истинного бесконечного (письмо XXIX) 100 Спиноза приводит пространство между двумя неравными кругами, один из которых находится внутри другого, не касаясь его, и которые не концентричны. Этой фигуре и понятию, в качестве примера которого 101 он ею пользуется, он, по-видимому, придавал столь большое значение, что сделал ее эпиграфом своей «Этики» 102. — «Математики, — говорит он, — умозаключают, что неравенства, возможные в таком пространстве, бесконечны не от бесконечного множества частей, ибо величина этого пространства определена и ограничена, и я могу предположить такое пространство большим или меньшим, а они делают этот вывод на том основании, что природа этой вещи превосходит всякую определенность» 103. — Как видим, Спиноза отвергает представление о бесконечном как о множестве или как о незавершенном раде и напоминает, что в пространстве, приводимом им в качестве примера, бесконечное не находится по ту сторону, а налично и полно; это пространство есть нечто ограниченное, но именно потому бесконечное, «что природа вещи превосходит всякую определенность», так как содержащееся в нем определение величины в то же время не может быть представлено как определенное количество или, употребляя приведенное выше выражение Канта, синтезирование не может быть завершено, доведено до некоторого — дискретного — определенного количества. — Каким образом противоположность между непрерывным и дискретным определенным количеством приводит к бесконечному, — это мы разъясним в одном из следующих примечаний. — Бесконечное рада Спиноза называет бесконечным воображения, бесконечное же как соотношение с самим собой — бесконечным мышления или infinitun actu [актуально бесконечным]. Оно именно actu, действительно бесконечно, так как оно внутри себя завершено и налично. Так, рад 0,285714... или 1 + а+а+а... есть лишь бесконечное воображения или мнения, ибо он не обладает действительностью, ему безусловно чего-то
недостает. Напротив, 2/7 или 1/1-а есть в действительности не
только то, что рад представляет собой в своих наличных членах, но к тому же еще и то, чего ему недостает, чем он только
должен быть. 2/7 или 1/1-а есть такая же конечная величина, как заключенное между двумя кругами пространство и его неравенства в примере Спинозы, и, подобно этому пространству, может быть увеличена или уменьшена. Но отсюда не получается нелепость большего или меньшего бесконечного, ведь это определенное количество целого не касается отношения его моментов,
природы вещи т. е. качественного определения величины; то, бесконечном раде имеется налицо, есть также конечное
228______________КНИГА I. УЧЕНИЕ О БЫТИИ_____________
определенное количество, но кроме того еще нечто недостающее. — Напротив, воображение не идет дальше определенного количества, как такового, и не принимает во внимание качественного соотношения, составляющего основу имеющейся несоизмеримости.
Несоизмеримость, имеющая место в примере, приводимом Спинозой, заключает в себе вообще криволинейные функции и приводит к тому бесконечному, которое ввела математика при действиях с такими функциями и вообще при действиях с функциями переменных величин; это бесконечное есть истинно математическое, качественное бесконечное, которое мыслил себе и Спиноза. Это определение мы должны здесь рассмотреть подробнее.
Что касается, во-первых, признаваемой столь важной категории переменности, под которую подводятся соотносимые в этих функциях величины, то они прежде всего переменны не в том 2 смысле, в каком в дроби 2/7 переменны оба числа 2 и 7, поскольку
вместо них можно поставить также 4и14, 6и 21 и т. д. до бесконечности без изменения значения дроби. В этом смысле можно с еще большим правом в дроби т поставить вместо а и
b любые числа, не изменяя того, что должно выражать a/b. Лишь в том смысле, что и вместо х и у в той или иной функции можно поставить бесконечное, т. е. неисчерпаемое множество чисел, а и b суть такие же переменные величины, как и х и у. Поэтому выражение переменные величины страдает неясностью и неудачно выбрано для определений величин, интерес которых и способ действий над которыми коренятся в чем-то совершенно другом, чем только в их переменности.
Чтобы выяснить, в чем заключается истинное определение тех моментов функции, которыми занимается высший анализ, мы снова должны вкратце обозреть отмеченные выше ступени.
В дробях 2/7 или a/b числа 2 и 7, каждое само по себе, суть
определенные кванты и соотношение для них несущественно; а и b равным образом должны представлять такие определенные количества, которые и вне отношения остаются тем, что они есть. Далее, 2/7 и a/b суть также постоянное определенное количество, некоторое частное; отношение составляет некую численность, единицей которой служит знаменатель, а численностью этих единиц — числитель, или наоборот. Если бы мы подставили вместо 2и7 — 4 и 14 и т. д., то отношение осталось бы тем же самым и как определенное количество. Но это в корне изменяется,