Ж.-П. Ш.: Речь идет все о том "же математическом формализме?
А. К.: О том же самом математическом формализме. Дело лишь в изменении масштаба: при сильном взаимодействии стандартный масштаб длины составляет 10~13 сантиметров, в то время как в случае гравитации он будет равен 10~33 сантиметров. Следовательно, необходима энергия, намного превосходящая все то, что мы можем получить, иначе говоря, очевидно, что ни один доступный нам экспериментальный феномен из этой теории не следует. На данный момент теория струн имеет значение лишь в плане, не скажу, что чисто философском, поскольку это не так, но, скорее, формальном. Известно, что описание расходимостей в теории поля можно уточнить посредством введения этих самых «струн». Заменим точки струнами, а частицы малыми струнами, способными перемещаться. Смысл такой замены объясняется очень просто. Когда две частицы сталкиваются, образуя новую частицу, или когда одна частица делится на две, мы наблюдаем сингулярный процесс, т. е. возникает особого рода точка, из которой выходят три ветви (рис. 11). Это и есть сингулярность, которая является источником упомянутых мною только что расходимостей и возникает при обмене одной или нескольких виртуальных частиц. Однако если заменить линию, символизирующую частицу, цилиндром малого диаметра, по которому перемещается струна, то хорошо видно, что три цилиндра, подобно самым обыкновенным водопроводным трубам, могут соединяться и без сингулярности, оставаясь при этом везде круглыми (рис. 11?). Чего можно ожидать от этой теории? Заменив траектории цилиндрами, мы избавляемся от сингулярности, она становится конечной, вместо того, чтобы быть бесконечной, как предполагает классическая теория.
64
ПРИРОДА, ОДЕТАЯ ПО МЕРКЕ
Рис. 11. Пример расходящихся диаграмм в квантовой электродинамике.
Рис. 11?. Диаграмма без сингулярности, согласно теории струн.
3. ЭЙНШТЕЙН И МАТЕМАТИКА 65
Я хотел бы повторить, что мое личное отношение к физике совсем не является отношением физика, хотя я восхищаюсь всеми открытиями, сделанными физиками - как, например, открытие Гейзенберга - в их весьма прагматичной манере, т. е. происходящими из опыта. Физикам принадлежит и честь такого необычайно важного открытия, как теория поля, однако на данном этапе развития науки эта теория не укладывается пока так просто в рамки уже известной нам области математической реальности. Собран огромный объем необработанного материала, о добыче новых экспериментальных результатов речь уже не идет. Математика в этом смысле отстает; переварить то, что поступает от физиков, мы пока не в состоянии. Таким образом, нам, очевидно, следует сосредоточить наши усилия на этих физических открытиях, причем работать нужно, скорее, в рамках чистой математики, не пытаясь искусственно втиснуть в рамки те вещи, которые естественным образом туда не помещаются.
Ж.-П. Ш.: У меня создается впечатление, что работа физика - равно, как и работа математика - очень похожа на изготовление «интеллектуальных самоделок1», если воспользоваться термином, который так нравится Клоду Леви-Строссу [71] и Франсуа Жако-бу [62]. Берем модель в одном месте и применяем ее к экспериментальному наблюдению в другом. Теория струн не годится для того, чтобы объяснить диффузию частиц. Отказаться от такой теории! Но вдруг она совершенно неожиданно оказывается пригодной для уточнения теории квантовой гравитации. Здесь мы имеем дело, скорее, с этаким теоретическим «прет-а-порте», нежели с «шитьем по мерке». Это в какой-то степени делает более привлекательными и те дисциплины, которые несколько легкомысленно принято называть «точными науками», снимает с них завесу таинственности!
С другой стороны, я отчетливо помню, что, говоря об отношении математических объектов к объектам физическим, ты употребил выражение «втиснуть в рамки», вместо «отождествить». И этими самыми рамками ты определяешь весьма специфичный способ описания физической реальности. Мне же, напротив, кажется, что если бы математика присутствовала изначально в природе, если бы материя организовывалась посредством математических законов, то мы имели бы тогда полное отождествление между математиче-
*В оригинале bricolage, что приблизительно означает «поделки», «всевозможные вещи, которые мастерят своими руками из подручных материалов». - Прим. перев.
66 ПРИРОДА, ОДЕТАЯ ПО МЕРКЕ
скими и природными объектами. Ничего подобного, однако, мы не наблюдаем. Это означает, если следовать твоей логике, что математических объектов в природе нет. Они где-то в другом месте, но где? В каком-то ином состоянии, в какой-то иной форме, которые ты пока еще не определил. У тебя получается своего рода дуализм между материей и математикой, этакий раскол между телом и духом, которого я, естественно, принять не могу.
А. К.: Дуализм тела и духа располагается в иной плоскости. Окружающий нас физический мир, не являясь вместилищем математической реальности, обладает, в то же время, некоторой труднообъяснимой взаимосвязанностью с этой математической реальностью. Как сказал, если не ошибаюсь, Эйнштейн: самая непостижимая черта физики в том, что она постижима. Сложно представить, что именно математика ответственна за организацию природных феноменов.
Ж.-П.Ш.: Согласен с «организацией феноменов», добавлю лишь «в нашем мозге».
А. К.: Не знаю. Я не совсем уверен, что можно говорить «в нашем мозге». Так можно договориться и до того, что внутри нашего мозга сосредоточено все восприятие внешнего мира.
Ж.-П.Ш.: Так оно и есть.
А. К.: Да, но мы же только что сошлись на том, что внешний мир существует независимо от нас.
Ж.-П.Ш.: Верно, а воспринимаем мы его исключительно посредством нашего мозга и наших органов чувств.
А. К.: Точно такое же отношение к нам имеет и математический мир. Он существует независимо от нас, коль скоро все математики согласны друг другом относительно независимой структуры индивидуального восприятия. С другой стороны, очевидно, что это вполне может побудить кого-нибудь высказаться в том духе, что математический мир реализуется исключительно в его мозге, точно так же, как внешний физический мир воспринимается человеком только через мозг.
Ж.-П.Ш.: Разумеется. Понимаю. Но не согласен. В частности, с твоим «точно так лее». Я уже подчеркивал опасность употребления метафор в таких ситуациях. Аналогия не является доказательством. В конце концов, отношения математики с биологией более просты, чем с физикой, и гораздо менее двусмысленны. Построение моделей требует использования математического аппарата, иногда даже происходит смешение биологии с математикой,
4. ПОЛЬЗА ОТ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ В БИОЛОГИИ 67
как ты только что отметил. Наша точка зрения менее амбициозна, но обеспечивает более значительную дистанцию. Таким образом, мне кажется, что наша позиция является более определенной, чем позиция некоторых физиков.
А. К.: Естественно, дистанция здесь больше. Переплетение математики и физики объясняет то, что физикам удается удерживать дистанцию, лишь прилагая большие усилия. Да, я согласен.
4. Польза от математических моделей в биологии
Ж.-П.Ш.: Вера в объясняющую способность математической модели встречается у биологов реже. Применительно к биологии математика служит, главным образом, двум целям. Первая - это анализ экспериментальных данных...
А. К.: Это ты о статистике.
Ж.-П.Ш.: Да, о получении и обработке данных. Это можно делать и при помощи компьютера, автоматически, не привлекая интеллектуальные способности экспериментатора. Кроме того, математика помогает нам при построении теоретических моделей. Эти модели разрабатываются на основе экспериментальных данных, как и в физике. Мы учитываем соответствующие посылки - например, для исследования распространения нервного импульса нам необходимо учесть величину изменения потенциала в определенной точке нерва и силу тока, создаваемого ионами натрия или калия в зависимости от потенциала. Ходжкин и Хаксли предложили уравнение [55], которое на основании этих посылок дает представление об ионной природе нервного импульса. Это уравнение позволяет описать явление, реконструировать его, опираясь на элементарные данные (см. рис. 12 и 12?).
А. К.: Такой способ кодировать информацию...
Ж.-П.Ш.: И, по большей части, воссоздавать ее заново.
А. К.: То есть это почти как в языке, поскольку язык служит как раз для воспроизводства...
Ж.-П.Ш.: Да. Язык позволяет воспроизводить информацию, но он, кроме того, обладает предсказательным характером. Во всяком случае, ни один знакомый мне биолог не скажет, что уравнение Ходжкина и Хаксли можно идентифицировать с нервным импульсом, ни даже то, что оно управляет его распространением. Распространение нервного импульса диктуется вовсе не тем или
68
ПРИРОДА, ОДЕТАЯ ПО МЕРКЕ
01234
Рис. 12. Модель нервного импульса, предложенная Ходжкином и Хаксли. Волна распространяющегося потенциала показана прерывистой чертой (V). Ее можно разложить на две составляющих: транспорт ионов Na"1" внутрь клетки и ионов К"1" за пределы клетки, представленные здесь в виде проводимостей #Na и #к. (Воспроизводится по [56].}
Рис. 12?. Первичная структура канала, селективного в отношении ионов натрия, которые задействованы в распространении нервного импульса. С помощью методов молекулярной генетики был идентифицирован генетический материал, содержащий код протеина, ответственного за транспорт ионов Na"1" сквозь мембрану нейрона в процессе распространения нервного импульса. Этот протеин состоит из одной цепочки длиной в 1820 аминокислот. В нижней строке цепочки - участок молекулы ДНК, представленный в виде последовательности триплетов из четырех оснований (А, Т, G и С); в верхней строке - участок молекулы протеина, образуемый соединением существующих в природе аминокислот (21 аминокислота), обозначенных здесь трехбуквенным кодом. (Воспроизводится по [85])
иным Универсальным Математическим Законом, как любят повторять, говоря о своей работе, некоторые физики!
А. К.: Мне кажется, в данном случае ты очень точно формулируешь проблему. Если провести анализ какого-либо явления - химический, скажем, или электрический, - то полагаю можно, воспользовавшись химическими законами, прийти к доказательству соответствующего уравнения.
Ж.-П.Ш.: Очень важный момент. Упомянутое математическое уравнение можно было бы объяснить позднее - по меньшей мере, частично - с помощью лежащих в основе явления молекулярных процессов. Молекулу, образующую чувствительный к напряжению канал, через который проходят ионы натрия, удается изолировать, нуклеиновую же кислоту, которая эту молекулу кодирует, мы уже умеем клонировать и воспроизводить [85]. Отныне молекулярные механизмы, определяющие распространение нервного импульса, находятся в наших руках. При всем том важно уяснить, что математическое уравнение не позволяет добраться непосредственно до элементарной структуры, которая как раз и объясняет явление. Доступ к этой структуре можно получить лишь при использовании совершенно другого подхода, основанного на методах биохимии и молекулярной биологии. Математическое уравнение распространения нервного импульса основывается на некотором количестве предположений, относящихся к постулируемым моделью каналам. Разумеется, оно определяет некоторый набор элементарных ионных свойств, которые должна демонстрировать ответственная за рассматриваемое явление молекула. Однако из уравнения совершенно невозможно узнать, являются ли эти самые каналы протеинами или же липи-дами. Уравнение имеет дело с кооперативными явлениями, происходящими на уровне мембраны и ионного транспорта. Оно не сообщает нам, каково будет точное число участвующих в процессе субъединиц или действующих протеинов. Математика играет для биолога лишь некоторую предсказательную роль, весьма при этом ограниченную. Она не позволяет нам дойти непосредственно до структуры.
Приведу в качестве иллюстрации этого соображения другой пример - законы наследственности. Это один из самых известных и самых простых примеров. Исследуя наследственную передачу цвета цветов гороха, Мендель показал, что она следует законам, которые формулируются предельно простым математическим
4. ПОЛЬЗА ОТ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ В БИОЛОГИИ 71
уравнением. Законы Менделя позволяли сделать вывод о существовании устойчивых и передаваемых по наследству детерминантов, но, разумеется, не позволяли предположить, что материальным носителем наследственности являются хромосомы или, тем более, ДНК.
? обоих приведенных мной примерах - распространение нервного импульса и законы Менделя - математическое уравнение описывает некую функцию. Оно позволяет определить поведение, но не объясняет явление. В биологии объяснение идет в паре с идентификацией структуры, порождаемой определяющей ее функцией. Открытие требует учета отношений структура-функция, а не одного лишь описания процесса при помощи математического уравнения.
А. К.: Я согласен с твоей интерпретацией. Так часто бывает и в физике, когда мы начинаем решать задачу с написания уравнений среднего поля, совсем как физики XIX века. Пока нам ничего не известно о соответствующей микроскопической структуре, доказать эти уравнения мы не можем. Но как только теория приобретает достаточно проработанный вид, в действие вступает ге-неративность математики. Мой любимый пример позаимствован у Гейзенберга. Результаты экспериментальной спектроскопии - такие, как комбинационный принцип Ридберга-Ритца - привели Гейзенберга к пониманию того, что алгебра наблюдаемых величин для системы атома должна быть некоммутативной, алгеброй матриц. Из одного лишь этого наблюдения и некоторого количества математических преобразований на свет явилось уравнение Шредингера, объясняющее загадочные числа (разности обратных квадратов двух целых чисел), которые управляют закономерностями в спектре излучения атома водорода. Располагая принципом исключения Паули и более развитой математикой, мы сможем, в конечном счете, справиться и с анализом уравнения Шредингера для атома с n электронами.
Ж.-П. Ш.: И, наконец, полностью описать таблицу Менделеева.
А. К.: Это-то и удивительно. В моделировании любого явления можно различить два этапа. В первую очередь, это этап, который прошли физики XIX века, наблюдая течение потока жидкости и описывая явления макроскопически. Впоследствии, с ростом понимания микроскопической структуры материи, ученые пришли к использованию генеративности математики, которая позволила установить, что количество возможных вариантов, в общем слу-
L
72 ПРИРОДА, ОДЕТАЯ ПО МЕРКЕ
чае, ограничено, и предопределила дальнейшее развитие химии как науки (см. рис. 13).
Ж.-П.Ш.: Однако не связан ли этот генеративный аспект, как ты только что отметил, именно с тем фактом, что мы достигаем здесь самого нижнего уровня, где проявляются закономерности, обладающие вследствие этого универсальной применимостью?
А. К.: Разумеется. До тех пор, пока нам не удастся добраться до уровня, расположенного глубже среднего поля, эффективность генеративного аспекта математики, как мне представляется, будет ограниченной.
Ж.-П.Ш.: Примерно о том же я и говорил несколько ранее. Уравнение Ходжкина и Хаксли допускает обобщение. Ему присущ предсказательный аспект. Однако как только дело доходит до анализа индивидуальных ионных каналов и молекул, коллективная активность которых формирует нервный импульс, возникает новая совокупность правил и предсказаний. Они формулируются в новой математической форме, которая применяется к новым системам - к каналам, селективным в отношении кальция или же к тем, что чувствительны к нейромедиаторам.
А. К.: Абсолютно согласен. И все же я хотел бы предложить некую общую критику в том, что касается типа математики, используемого в такого рода моделировании. Упомянутый тип математики всегда вращается вокруг уравнений с частными производными или, в лучшем случае, вокруг моделей статистической механики. В обоих случаях, как и в большинстве физических моделей, ведущим принципом является фундаментальное понятие области взаимодействия. Даже взаимодействия нелокализованного типа, такие как ньютоновское притяжение, становятся локализованными при введении подходящих полей. Принцип области взаимодействия является золотым правилом современной физики, главный инструмент которой - лагранжев формализм. Однако мне не кажется очевидным, как минимум a priori1, что интересной и полезной биологу, специализирующемуся на функционировании мозга, будет лишь та математика, о которой я говорил. Было бы хорошо, если бы биологи не только имели хотя бы элементарное представление о таких понятиях, как комбинаторная топология, но и активно использовали бы их.
Ж.-П. Ш.: Так и будет... после нашей беседы.
«из предыдущего» (лат.), т.е. заранее, до опыта. - Прим. перев.
4. ПОЛЬЗА ОТ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ В БИОЛОГИИ
73
Z Элемент И^эВ) Электронная конфигурация
Is 25 2р 3s 3p 3d 4s 4p 4d 4/
1 H Водород 13,6 1
2 Не Гелий 24,6 2
3 Li Литий 5,4 1
4 Be Берилий 9,3 2
5 В Бор 8,3 заполнен 2 1
6 С Углерод 11,3 2 2
7 N Азот 14,5 (2) 2 3 Число электронов
в каждом слое
8 О Кислород 13,6 2 4
9 F Фтор 17,4 2 5
10 Ne Неон 21,6 2 6
И Na Натрий 5,1 1
12 Mg Магний 7,6 2
13 AI Алюминий 6,0 2 1
14 Si Кремний 8,1 зало, лен 2 2
15 16 P Фосфор S Сера 10,5 10,4 (2) 2 3 2 4
17 Cl Хлор 13,0 2 5
18 Ar Аргон 15,8 2 6
1
19 К Калий 4,3
20 Са Кальций 6,1 2
21 Se Скандий 6,5 1 2
22 Ti Титан 6,8 2 2
23 V Ванадий 6,7 заполнен з 2
24 Сг Хром 6,8 5 1
25 ?? Марганец 7,4 (2) (8) (8) 5 2
26 Fe Железо 7,9 6 2
27 Со Кобальт 7,9 7 2
28 Ni Никель 7,6 8 2
29 Си Медь 7,7 10 1
30 Zn Цинк 9,4 10 2
31 G a Галлий 6,0 2 1
32 Се Германий 7,9 заполне н 2 2
33 As Мышьяк 9,8 2 3
34 Se Селений 9,7 (2) (8) (18) 2 4
35 Вг Бром 11,8 2 5
36 Кг Криптон 14,0 2 6
Рис. 13. Начало периодической таблицы элементов.
74 ПРИРОДА, ОДЕТАЯ ПО МЕРКЕ
А. К.: Именно по этой причине я и был так заинтересован в нашей встрече. В биологии математика используется как язык. Если, к примеру, вы располагаете кривой ответов, то очевидно, что гораздо проще ее выразить, когда есть простая математическая функция, позволяющая эту кривую описать, чем когда вы вынуждены описывать ее, выделяя параметры. Это просто проявление молодости биологии. Если посмотреть на то, как развивалась физика, то можно заметить, что те или иные явления прежде всего стараются формализовать, описать их с помощью математических функций. Так, например, произошло с открытием Планка. Однако в какой-то момент, в силу генеративного характера математики, появляется возможность добавлять в описание что-то новое. И не только потому, что уравнения допускают прогнозирование. Здесь проявляется та же внутренняя взаимосвязанность явления с математикой, какую мы наблюдали в случае атома водорода, что позволяет допустить, исходя из критериев простоты и из математической эстетики, существование интуитивного предчувствия возможной истинности в тех случаях, когда мы практически не располагаем никакими предварительными экспериментальными результатами, а затем и убедиться в оправданности этого предчувствия. Я с большим оптимизмом отношусь к той генеративной роли, какую математика могла бы, при необходимости, сыграть и в биологии. Мне представляется, что очень скоро - пусть и не сегодня, а лишь когда удастся понять, какую из областей математической реальности можно лучше всего увязать с биологией, - генеративность математики придется весьма и весьма кстати.
5. Квантовая механика: первичный осмотр
Ж.-П. HL: Я хотел бы вернуться к квантовой механике и к тем выводам, которые можно получить посредством грубого, примитивного, но все же достаточно уместного приложения математики к биологии. Время от времени мы сами превращаемся в математиков, или же сотрудничаем с математиками, стремясь отыскать, скажем так, математическую рамку, которая по возможности наилучшим образом подошла бы к интересующим нас биологическим феноменам. Причем речь идет вовсе не об идентификации биологических реалий с математическими объектами. Мы всего лишь пытаемся сконструировать математические объекты, которые со-
?
5. КВАНТОВАЯ МЕХАНИКА: ПЕРВИЧНЫЙ ОСМОТР 75
ответствовали бы объектам природным. Мы размышляем, находим решение, разрабатываем модель за моделью, обращаемся к литературе и находим там множественные свидетельства предшествующих нашим попыток и ошибок. И что же мы делаем в результате? Мы выбираем модель, которая лучше всего «сидит». Иначе говоря, наш подход к математике является крайне прагматичным и конкретным. Мы берем от нее только то, что наиболее полно соответствует природной реальности. Математика для нас есть набор мысленных объектов. Ни больше, ни меньше.
В связи с чем мне хотелось бы снова вместе с тобой обратиться к квантовой механике - области физики, которая мало мне знакома. У меня такое чувство, что физики работают в области, в рамках которой им весьма сложно представить то, что происходит в масштабе, очень отличном от того, в котором функционирует наш мозг и органы чувств (см. рис. 14). И когда физик говорит нам, что законы квантовой физики предполагают фундаментальную неопределенность (я умышленно употребляю термины, которыми они пользуются в своих трудах), возникает вопрос, а не совершают ли физики серьезную эпистемологическую ошибку...
А. К.: Ты хочешь сказать «ошибку на языковом уровне»?
Ж.-П. Ш.: Ошибку, которая заключается в идентификации природы и модели, созданной ими для описания этой природы. Учитывают ли они всерьез не только инструмент измерения и взгляд наблюдателя, но и особенности функционирования собственного мозга, равно как и его способность воспринимать явления в том масштабе, в котором повседневный опыт и здравый смысл оказываются неприменимы. Что ты думаешь об этом?
А. К.: Я и сам уже сталкивался с вопросом о фундаментальной неопределенности. Поэтому я смогу тебе ответить. В первую очередь, возникает проблема языка - впрочем, она не является самой важной. Известно, что нельзя представлять частицу как материальную точку с определенными местоположением и скоростью. Если мы хотим, например, построить мысленный образ электрона, вращающегося вокруг ядра атома водорода, то правильнее будет вообразить некую волновую функцию, определяемую уравнением Шредингера и уровнем энергии, нежели планетарную систему. В случае же более сложного атома - например, атома гелия, в котором ядро окружают два электрона, - мысленный образ окажется гораздо более сложным, поскольку волновая функция, пространственную форму которой в случае с одним электроном
76
ПРИРОДА, ОДЕТАЯ ПО МЕРКЕ
Рис. 14. Гравюра из «Трактата о равновесии жидкостей» Блеза Паскаля (1664, 2-е издание, С. Desprez, Париж). Исследуется проблема меры в физике и связи этой меры с экспериментатором. Любопытно, что последний изображен ниже уровня воды.
(см. рис. 15) еще можно хотя бы визуализировать, представляет теперь собой функцию с двумя пространственными переменными, т.е. функцию в шестимерном пространстве. Следующим шагом мы должны понять, что хотя язык частиц и нельзя назвать самым удобным для восприятия, он тем не менее позволяет формулировать вопросы, на которые природа дает ответы. В качестве конкретного примера рассмотрим некий дискретный источник частиц - скажем, электронов, - который время от времени испускает их в направлении очень узкой прорези, создавая эффект дифракции. Можно описать эту систему, отталкиваясь от волновых функций, и предсказать вид дифракционной картины на экране, расположенном за прорезью, в любой точке траектории электрона. Если бы язык частиц никуда не годился, мы сразу получили бы тому доказательство: вследствие дифракции электрон должен был бы трансформироваться в облако. Однако этого не происходит. Проводя опыт, мы каждый раз будем получать попадание в ту или иную точку на экране. Иначе говоря, электрон остается частицей. Именно в подобных опытах и проявляется особенно ярко упомя-
5. КВАНТОВАЯ МЕХАНИКА: ПЕРВИЧНЫЙ ОСМОТР
77
т - О
т -
2р, т = О Рис. 15. Пример волновой функции электрона в атоме водорода.
I
78 ПРИРОДА, ОДЕТАЯ ПО МЕРКЕ
нутая тобой фундаментальная неопределенность. Всякий раз, как источник испускает электрон, этот электрон действительно ударяется в некоторую точку ? на регистрирующем экране (см. рис. 16). Все дело, однако, в том, что результат такого эксперимента («источник испускает электрон, который затем достигает некоторой точки ? на экране») невоспроизводим в принципе. И это нисколько не зависит от точности задания величины х. Равно невоспроизводим и результат эксперимента «источник испускает электрон, который затем достигает верхней половины экрана». Нам никогда не удастся воспроизвести исходные данные с точностью, достаточной для того, чтобы наверняка получить тот же самый конечный результат. При проведении второго опыта у нас будет не более одного шанса из двух, что результат будет тем же. Какова бы ни была точность испускающего электроны аппарата, мы не сможем повторить опыт с тем же результатом. Воспроизводима лишь частота, вероятность появления электрона в той или иной точке экрана. Единственная воспроизводимая величина - нечто вроде плотности, иначе говоря, кривая частоты попадания электронов в различные точки регистрирующего экрана. Она имеет форму кривой дифракции и позволяет предположить, что электрон прибудет в ту или иную точку с такой-то вероятностью.
Ж.-П.Ш.: Существование фундаментальной неопределенности, тем не менее, не доказано. Аналогичные вещи могут происходить и в гораздо более макроскопических ситуациях, например, при броуновском движении...
А. К.: Если бы так. Необходимо уяснить, что сам факт удара электрона в ту или иную точку экрана ни в коем случае не следует принимать за воспроизведение результата эксперимента. Этот результат не в состоянии предусмотреть ни одна теория, поскольку он невоспроизводим. Если мы намерены заниматься физикой, то нужно четко определить, что такое физическое явление. Как только мы дадим этому понятию связное определение, в квантовой механике больше не возникнет никакой путаницы и никаких парадоксов. Теория замечательно согласуется с соответствующей математической моделью. Какое же определение можно дать понятию «физическое явление»? О физическом явлении можно говорить, только располагая воспроизводимыми экспериментальными результатами. Таким образом, физическое явление есть результат опыта, который, если точно оговорить исходные данные, сможет с идентичным результатом воспроизвести далее экспериментатор
5. КВАНТОВАЯ МЕХАНИКА: ПЕРВИЧНЫЙ ОСМОТР
79
Источник электронов
Прорезь в перегородке
Фотографическая пластинка
Рис. 16. Явление дифракции.
в другой лаборатории. Если же, напротив, мы не можем передать исходные данные настолько точно, чтобы получить при повторении эксперимента тот же результат, то рассматриваемое нами явление не является физическим явлением. Поэтому оно и не может быть предусмотрено теорией.
Ж.-П.Ш.: То есть фундаментальной неопределенности не существует. Тому факту, что электрон в один момент времени попадает в одну точку, а в другой момент - в другую, может, в конце концов, кто-нибудь не сегодня завтра даст детерминистское объяснение.
А. К.: Не даст. Известно, что это явление необъяснимо даже с помощью так называемых «скрытых переменными».
Ж.-П.Ш.: Это потому, что гипотеза скрытых переменных выводится из частной модели. Но, возможно, существует какая-либо другая модель, о которой физики еще не задумывались.
А. К.: Нет. Гипотезу скрытых переменных невозможно совместить с существующей моделью квантовой механики, моделью, единственным оправданием которой служит ее невероятная по-
80 ПРИРОДАг ОДЕТАЯ ПО МЕРКЕ
пулярность. Можно представить последовательность опытов, подтверждающих неравенства Белля, согласно которым интерпретация посредством скрытых переменных совместима с существующей моделью. Моя точка зрения очень проста. Существуют результаты, которые можно назвать физическими, поскольку они воспроизводимы. И есть другие результаты, физическими не являющиеся, поскольку воспроизвести их нельзя.
Ж.-П. Ш.: Я все думаю об употреблении термина «невоспроизводимость». Когда при стимуляции глаза записывают реакцию нейрона, то получают целый пакет импульсов. Однако из опыта в опыт мы вовсе не обязательно записываем при этом одинаковое количество импульсов...
А. К.: Естественно. Зато опираясь на эти результаты, можно вывести некий закон, который будет воспроизводим, и именно это обстоятельство и решает дело в данном случае.
Ж.-П. Ш.: Так и есть. После некоторого количества опытов обнаруживается некий усредненный и вполне воспроизводимый отклик. И многие биологи скажут, что формирование этого отклика можно считать «детерминистским» - от сенсорного рецептора к нейрону, независимо от всевозможных «колебаний», вносящих в процесс свой вклад. Я использую термин «колебания», поскольку речь идет о изменчивости, вызванной более тонкими модальностями передачи сигнала на уровне синапсов, геометрии контактов между нервными клетками и т. д., которые исследователь в опытах такого рода не контролирует. На деле при переносе информации внутри нервной системы существует несколько уровней изменчивости. В них нет ничего загадочного [5J. Если применить такое рассуждение к процессам, которые изучают физики, то возникает вопрос, не в том ли все дело, что те просто пока не нашли модель, которая дала бы более глубокое объяснение. Модель скрытых переменных не работает. Разве не следует, столкнувшись с отрицательным результатом или неудачной интерпретацией, остановиться и задуматься? Возможно, когда-нибудь мы сможем прийти к более рациональному объяснению.
А. К.: В случае с глазом известно, что при повторении опыта с одними и теми же исходными данными каждый раз получается один и тот же пакет импульсов.
Ж.-П. Ш.: Да, теоретически. На практике же это невозможно.
А. К.: В то время как в квантовой механике мы имеем дело именно с теоретической невозможностью; в этом-то и разница.
5. КВАНТОВАЯ МЕХАНИКА: ПЕРВИЧНЫЙ ОСМОТР 81
Ж.-П.Ш.: Боюсь, я не совсем понимаю твое рассуждение. Нечто представляется теоретически невозможным - может быть лишь потому, что до сих пор не была обнаружена адекватная теория?
А. К.: Нет. К сожалению, это очень сложный момент. Моя позиция в этом вопросе вполне однозначна. Некоторые экспериментальные результаты можно счесть физическими явлениями. Однако они таковыми не являются, поскольку невоспроизводимы. Никакая теория не может предсказать явление, если его нельзя воспроизвести.
Ж.-П.Ш.: Но это вовсе не исключает того, что экспериментальный результат может стать физическим явлением. Создается впечатление, что физики оказались во власти теории, которая объясняет природные явления слишком хорошо, и им теперь ни к чему искать - и найти наконец - другую теорию. Разве что они, заинтересовавшись какой-нибудь поставленной задачей, рискнут-таки углубиться в суть вопроса.
А. К.: Согласно теории в ее современном состоянии, фундаментальная неопределенность проявляется непосредственно при измерении двух последовательно наблюдаемых (некоммутируемых) величин; количественно эту неопределенность выражает принцип неопределенности Гейзенберга. Этот принцип имеет не только теоретическую, но и практическую значимость. На экспериментальном уровне квантовая механика ставит проблему проведения опытов и невоспроизводимости их результатов. Если в опыте с электроном я закрываю щель и измеряю отдачу экрана, вызванную попаданием электрона, то это явление можно замечательно воспроизвести и отлично объяснить с помощью физики. Здесь действует закон сохранения импульса. Когда я говорю «При значительном количестве испущенных электронов вероятность попадания в определенную точку на экране имеет такое-то значение», я описываю явление совершенно воспроизводимое и вполне объяснимое с точки зрения теории. Если же я скажу «Электрон прибыл в такую-то точку на экране», то я опишу лишь результат, который экспериментально воспроизвести невозможно.
Ж.-П.Ш.: Под физическим явлением ты понимаешь явление воспроизводимое. Это значит, что нужно определить экспериментальные условия таким образом, чтобы эксперимент впоследствии можно было бы воспроизвести. Если бы мы знали о фактах, опре-
82 ПРИРОДА, ОДЕТАЯ по МЕРКЕ
делающих передвижение электрона вверх или вниз, то мы смогли бы воспроизвести это явление.
А. К.: Того, о чем ты говоришь, нельзя достичь, не изменив результата, даже на статистическом уровне.
Ж.-П. ILL: В таком случае, теория никуда не годится.
А. К.: Возможно, однако она точно объясняет воспроизводимые экспериментальные явления. И, как я уже упоминал, с помощью этой теории (правда, в несколько более уточненном виде) стало возможным предсказать, например, так называемый аномальный магнитный момент электрона, с погрешностью измерения, соответствующей погрешности в толщину волоса при измерении расстоянии от Парижа до Нью-Йорка.
Ж.-П. ILL: Необъясненным остается наиболее фундаментальный уровень, к которому математики еще не получили «мысленного» доступа. Модель Ходжкина и Хаксли отлично подходит для объяснения электрических феноменов в нервном импульсе в понятиях ионного переноса. Тем не менее, в ее рамках невозможно непосредственно идентифицировать соответствующие ионные каналы, что удалось, однако, осуществить молекулярному биолоху, использовавшему методы, радикально отличающиеся от тех, что использовали в своих опытах Ходжкин и Хаксли.
А. К.: Я все же приведу иллюстрацию, чтобы показать, как можно избавиться от дискомфорта, возникающего вследствие явной неопределенности квантовой механики. Если ограничить поле исследований физика воспроизводимыми явлениями, то мы получим совершенно связное единое целое, а невозможность предсказать, в какую точку угодит электрон, - это своего рода отступление, вызывающее сильную фрустрацию у теоретика. Возьмем пример, хорошо знакомый физикам: параллельные вселенные Эверет-та [32]. Все выглядит так, будто могут происходить все возможные события, что электрон может ударить в любую точку на экране. Однако каждый из этих возможных вариантов означает бифуркацию вселенной на две параллельных вселенных. Простоты ради предположим, например, что мы производим измерение с двумя возможными результатами. Это измерение, таким образом, создает бифуркацию на две параллельных вселенных. Мы окажемся в одной из них или в другой, в зависимости от той или иной реализованной возможности. Взаимосвязанность этих двух параллельных вселенных достаточна для того, чтобы в статистике средний результат был одинаковым. Каждый результат опыта
5. КВАНТОВАЯ МЕХАНИКА: ПЕРВИЧНЫЙ ОСМОТР 83
зависит от той конкретной параллельной вселенной, по отношению к которой происходит бифуркация. Сам по себе результат не воспроизводим.
Ж.-П. Ш.: Идея мне кажется интересной. Но умело поддерживаемая путаница между невоспроизводимостью и неопределенностью наводит на мысль, что большинство теоретиков бессознательно просто отказываются признать, что они потерпели здесь неудачу.
А. К.: Нельзя даже надеяться на возможность предсказания невоспроизводимого результата. Главным свойством физического эксперимента - думается, в этом вопросе все со мной согласятся - является его воспроизводимость. Если эксперимент невозможно воспроизвести, значит, он не обладает физическим содержанием. Неудача здесь не в теории, а в эксперименте. Настраивая экспериментальную установку, мы не приходим к знанию того, как уточнить исходные данные так, чтобы заранее знать точку попадания электрона. Принцип неопределенности Гейзенберга показывает, что достичь этого абсолютно невозможно; та же неопределенность проявляется и тогда, когда мы последовательно измеряем две наблюдаемые величины, которые не коммутируют между собой (как, например, в опыте Штерна - Герлаха).
Ж.-П. Ш.: Может быть, ты смог бы найти способ управлять каким-либо физическим параметром, на который раньше никто не обращал внимания. Это способ может быть как теоретическим, так и экспериментальным. Было бы пикантно, если бы провести эксперимент физикам предложил математик!
А. К.: И все-таки важно понять, что эта неудача есть неудача эксперимента. Поэтому мне и нравится приводить именно этот пример. Как правило, значение придают только теории, хотя эксперимент в данном случае играет роль едва ли не большую: в конце концов, наблюдаем мы именно экспериментальный результат, и именно этот результат не поддается воспроизведению.
Ж.-П.Ш.: Хороший эксперимент поставить гораздо сложнее, чем выдумать посредственную теорию. И наша беседа со всей очевидностью показывает, что в этой загадочной неопределенности, о которой говорят некоторые физики, особого смысла нет. Скорее всего, следует смириться с тем, что состояние наших знаний не позволяет нам пока оперировать этими понятиями, как в экспериментальном плане, так и в плане теории. Мне как-то сложно принять в качестве закона природы собственное невежество...
84
ПРИРОДА, ОДЕТАЯ ПО МЕРКЕ
А. К.: Действительно, в рамках существующей вполне связной системы воззрений мы научились объяснять воспроизводимые экспериментальные результаты. Я просто не представляю себе, как можно достичь понимания результатов невоспроизводимых. Весьма сложно принять, что на микроскопическом уровне, на квантовом уровне, существуют явления, которые мы не в состоянии воспроизвести. Впрочем, неприятие факта не отменяет самого факта. Сложно оценить и его последствия в философском смысле. Непостижимо, что на атомном уровне природные феномены абсолютно непредсказуемы. Даже физико-химическая «реальность» оказывается гораздо неуловимее, чем кажется на первый взгляд.
Нейронный математик
1. Озарение
ЖАН-ПЬЕР ШАНЖЁ: В наши дни немногие математики занимаются исследованием мозга. Читая книгу Дьедонне «Во славу человеческого разума» [28] - название которой немного напоминает Ad majorem dei gloriam1 Игнатия Лойолы, - я заметил, что слово «мозг» употребляется на ее страницах очень редко. Во всяком случае, не с объясняющей целью. Как раз совсем наоборот. Например, он пишет: «Рациональная активность творящего мозга никогда еще не получала равно рационального объяснения. Причем в математике меньше, чем где бы то ни было» [28, с. 38]. В этой книге, которая мне очень нравится, и которую я прочел с большим интересом, Дьедонне рассматривает развитие математики совершенно независимо от мозга - примерно так же историк искусства увлеченно исследует развитие живописи и скульптуры, не желая отдавать себе отчет в том, что и видим-то мы, по большей части, мозгом, а не глазами! Хорошо бы напомнить, что математик занимается математикой, все же используя свой мозг, иначе и быть не может!
АЛЕН Конн: Полностью с этим согласен. Мозг - материальный инструмент математика; понимание принципов функционирования мозга в применении к работе математика крайне важно.
Ж.-П. Ш.: Сходные соображения мы находим и у некоторых математиков прошлого - например, у Пуанкаре и Адамара. В своем замечательном «Эссе о психологии изобретения в математике» [49] Адамар размышляет о бессознательном и его последовательных слоях, участвующих в процессе математического творения. Он приводит выдержки из книги «Об уме и познании» Ипполита Тэна, философа, который еще удостаивал своим вниманием научные данные (в особенности это касается наук о нервной
*«К вящей славе Господней» (лат.) - Прим. перев.
86 НЕЙРОННЫЙ МАТЕМАТИК
системе), интерес к которым со времен Сартра, Фуко и их последователей постепенно сместился у многих современных философов в сторону психоанализа, хотя в последнее время начинают появляться исключения из этого правила, и весьма притом заметные [63].
Адамар описывает свою работу математика в очень интересной, на мой взгляд, манере. В первую очередь, он выделяет подготовительную работу, которая неизбежно включает в себя - причем здесь я с ним полностью согласен - провалы и ошибки, даже если математик скромно умалчивает об этом, представляя свои результаты в «хорошо переработанном», как правило, виде. Как и Пуанкаре, Адамар пытается свести вместе эти попытки «управления бессознательным» и различает в «математическом творчестве» несколько этапов, которые он называет «подготовка», «созревание» и «озарение». Он также подчеркивает важность использования знаков, равно как и методов мысленной визуализации, и ссылается на современного ему психолога Бине, который, как и Тэн, очень интересовался экспериментами по визуализации, начатыми английскими ассоциационистами. Замечательно, что совсем недавно этот интерес к мысленной визуализации снова проявился в экспериментальной психологии - через посредство таких авторов, как Косслин, Шепард и наш соотечественник Дени [22]. Здесь мы встречаемся с совместной заинтересованностью психологов и нейробиологов. Мысленный образ не следует рассматривать как нечто эфемерное и нематериальное, напротив, это результат весьма конкретной и вполне определенной активности мозга. Адамар указывает на то, что во время подготовительной работы, когда в мозге математика начинают возникать образы, иногда случается так, что его собственный мозг и чувства внезапно охватывает некое озарение. Оно составляет очень важный этап в творческой работе математика. Необходимо, впрочем, чтобы за озарением последовал третий этап, более осознанный, нежели предыдущий. Он состоит из проверок и определений, позволяющих более точно сформулировать рассуждение, теорему или доказательство. На этом последнем этапе вводятся такие понятия, как суждение и рассуждение.
Способ рассуждения Адамара относится к интроспективному типу. Он всегда подвергается критике психологов, философов и, естественно, нейробиологов, поскольку он субъективен. Тем не менее, это рассуждение весьма интересно, так как вы-
?
1. ОЗАРЕНИЕ 87
ражено в форме повествования, обладающего некоей объективностью - его могут воспроизвести и другие математики. Что ты думаешь об этом описании математического творчества, предложенного Пуанкаре и Адамаром?
А. К.: Я сам пережил - по крайней мере, мне так кажется - такого рода опыт. Первая фаза, созревание, представляет собой подход, основанный на уже приобретенных знаниях: мы постепенно концентрируемся на каком-то определенном мысленном объекте. Мы пытаемся сфокусировать свою мысль, подготавливаем рабочее пространство, окружаем себя знакомыми вещами. Третья фаза, верификация, начинается тогда, когда озарение уже произошло. Процесс верификации очень мучителен, так как всегда опасаешься, что где-то ошибся. Это самая болезненная фаза, поскольку невозможно узнать наверняка, права ли твоя интуиция... это почти как во сне, интуиция часто обманывает. Я помню, как однажды проверял полученный результат целый месяц: возвращался к малейшим деталям доказательства, это было вроде наваждения, хотя эту задачу можно было, в крайнем случае, доверить и компьютеру, который проверил бы логику рассуждения. А с другой стороны, когда озарение уже произошло, оно привносит значительную долю аффективности, так что ты уже не можешь остаться пассивным и безразличным. В тех редких случаях, когда со мной действительно происходило такое, я каждый раз не мог сдержать слезы. Я часто сталкивался со следующей ситуацией: в определенный момент, когда первый, подготовительный, этап уже завершен, натыкаешься на стену. Здесь ни в коем случае не следует совершать распространенной ошибки и переходить сразу к самому сложному. Нужно продвигаться неявно, где-то вблизи задачи. Если думать непосредственно о задаче, то накопленные в первой фазе средства очень быстро исчерпываются, и приходится отступать. Необходимо освободить мысль для того, чтобы в мозге могла совершаться подсознательная работа. Например, когда производишь алгебраические исчисления, относительно простые, но довольно длинные, мысль в течение этого времени не полностью сфокусирована на задаче, что благоприятствует подключению к работе подсознания. Естественно, математик должен быть при этом достаточно спокоен. Так можно достичь своего рода созерцательного состояния, которое не имеет ничего общего с состоянием концентрации студента, сдающего экзамен по математике. Воспользовавшийся этой техникой на экзамене студент, выйдя из
88 НЕЙРОННЫЙ МАТЕМАТИК
аудитории, скажет: «Я провалил экзамен, но мне пришла в голову идея, над которой я хочу еще поработать». Меня каждый раз поражает (я все еще о неявном подходе к задачам) величина видимой удаленности исходной задачи от того, чем я в данный момент занимаюсь.
Ж.-П. III.: Конечно. В течение всего этого периода полным ходом идет развитие твоего мозга. Ты строишь гипотезы, создаешь заготовки...
А. К.: Но задача-то стоит на месте.
Ж.-П. Ш.: Как же тогда неожиданно возникает решение задачи, если ты ходишь вокруг да около?
А. К.: Это достаточно трудно описать. Опыт показывает, что, если приступать к решению самой задачи непосредственно, то ресурсы такого «прямого», рационального, мышления очень быстро исчерпываются. Зависит, конечно, от сложности задачи, но если не достичь полного освобождения, то решение, как правило,